System parameter identification method and device based on unsupervised learning
The invention discloses a system parameter identification method and device based on unsupervised learning, and the method comprises the steps: constructing a state-space equation representing a target system, the state-space equation comprises a state equation used for representing the relation bet...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | ZHOU SIDA CHANG BAITONG CAO YAOGUANG YAN XIAOYU ZHANG ZHENGJIE ZHENG YIFAN YANG SHICHUN LIU XINHUA |
description | The invention discloses a system parameter identification method and device based on unsupervised learning, and the method comprises the steps: constructing a state-space equation representing a target system, the state-space equation comprises a state equation used for representing the relation between the input of the target system and a state variable, and the state equation is used for representing the relation between the input of the target system and the state variable; the observation equation is used for representing the relation between the state variable and the output of the target system, and the state equation comprises parameters to be identified; arranging the state-space equation as a first state-space equation which represents known parameters and contains to-be-identified parameters in a parameter separation form; matching with the first state-space equation, constructing a neural network model, the input and output of the neural network model corresponding to the input and output of the fi |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116805161A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116805161A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116805161A3</originalsourceid><addsrcrecordid>eNqNikEKwjAQRbtxIeodxgMIBrG4laK4EkH3ZUx-60A7CUla8PZW8ACuPu-9Py9u93fK6Clw5B4ZkcRBszRiOYtXmuTLO2J15DCKBT05wdGUBk1DQBzlyx04qmi7LGYNdwmr3y6K9fn0qC4bBF8jBbZQ5Lq6GlMetntTmuPun88H5Vw33g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>System parameter identification method and device based on unsupervised learning</title><source>esp@cenet</source><creator>ZHOU SIDA ; CHANG BAITONG ; CAO YAOGUANG ; YAN XIAOYU ; ZHANG ZHENGJIE ; ZHENG YIFAN ; YANG SHICHUN ; LIU XINHUA</creator><creatorcontrib>ZHOU SIDA ; CHANG BAITONG ; CAO YAOGUANG ; YAN XIAOYU ; ZHANG ZHENGJIE ; ZHENG YIFAN ; YANG SHICHUN ; LIU XINHUA</creatorcontrib><description>The invention discloses a system parameter identification method and device based on unsupervised learning, and the method comprises the steps: constructing a state-space equation representing a target system, the state-space equation comprises a state equation used for representing the relation between the input of the target system and a state variable, and the state equation is used for representing the relation between the input of the target system and the state variable; the observation equation is used for representing the relation between the state variable and the output of the target system, and the state equation comprises parameters to be identified; arranging the state-space equation as a first state-space equation which represents known parameters and contains to-be-identified parameters in a parameter separation form; matching with the first state-space equation, constructing a neural network model, the input and output of the neural network model corresponding to the input and output of the fi</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230926&DB=EPODOC&CC=CN&NR=116805161A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230926&DB=EPODOC&CC=CN&NR=116805161A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHOU SIDA</creatorcontrib><creatorcontrib>CHANG BAITONG</creatorcontrib><creatorcontrib>CAO YAOGUANG</creatorcontrib><creatorcontrib>YAN XIAOYU</creatorcontrib><creatorcontrib>ZHANG ZHENGJIE</creatorcontrib><creatorcontrib>ZHENG YIFAN</creatorcontrib><creatorcontrib>YANG SHICHUN</creatorcontrib><creatorcontrib>LIU XINHUA</creatorcontrib><title>System parameter identification method and device based on unsupervised learning</title><description>The invention discloses a system parameter identification method and device based on unsupervised learning, and the method comprises the steps: constructing a state-space equation representing a target system, the state-space equation comprises a state equation used for representing the relation between the input of the target system and a state variable, and the state equation is used for representing the relation between the input of the target system and the state variable; the observation equation is used for representing the relation between the state variable and the output of the target system, and the state equation comprises parameters to be identified; arranging the state-space equation as a first state-space equation which represents known parameters and contains to-be-identified parameters in a parameter separation form; matching with the first state-space equation, constructing a neural network model, the input and output of the neural network model corresponding to the input and output of the fi</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNikEKwjAQRbtxIeodxgMIBrG4laK4EkH3ZUx-60A7CUla8PZW8ACuPu-9Py9u93fK6Clw5B4ZkcRBszRiOYtXmuTLO2J15DCKBT05wdGUBk1DQBzlyx04qmi7LGYNdwmr3y6K9fn0qC4bBF8jBbZQ5Lq6GlMetntTmuPun88H5Vw33g</recordid><startdate>20230926</startdate><enddate>20230926</enddate><creator>ZHOU SIDA</creator><creator>CHANG BAITONG</creator><creator>CAO YAOGUANG</creator><creator>YAN XIAOYU</creator><creator>ZHANG ZHENGJIE</creator><creator>ZHENG YIFAN</creator><creator>YANG SHICHUN</creator><creator>LIU XINHUA</creator><scope>EVB</scope></search><sort><creationdate>20230926</creationdate><title>System parameter identification method and device based on unsupervised learning</title><author>ZHOU SIDA ; CHANG BAITONG ; CAO YAOGUANG ; YAN XIAOYU ; ZHANG ZHENGJIE ; ZHENG YIFAN ; YANG SHICHUN ; LIU XINHUA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116805161A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHOU SIDA</creatorcontrib><creatorcontrib>CHANG BAITONG</creatorcontrib><creatorcontrib>CAO YAOGUANG</creatorcontrib><creatorcontrib>YAN XIAOYU</creatorcontrib><creatorcontrib>ZHANG ZHENGJIE</creatorcontrib><creatorcontrib>ZHENG YIFAN</creatorcontrib><creatorcontrib>YANG SHICHUN</creatorcontrib><creatorcontrib>LIU XINHUA</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHOU SIDA</au><au>CHANG BAITONG</au><au>CAO YAOGUANG</au><au>YAN XIAOYU</au><au>ZHANG ZHENGJIE</au><au>ZHENG YIFAN</au><au>YANG SHICHUN</au><au>LIU XINHUA</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>System parameter identification method and device based on unsupervised learning</title><date>2023-09-26</date><risdate>2023</risdate><abstract>The invention discloses a system parameter identification method and device based on unsupervised learning, and the method comprises the steps: constructing a state-space equation representing a target system, the state-space equation comprises a state equation used for representing the relation between the input of the target system and a state variable, and the state equation is used for representing the relation between the input of the target system and the state variable; the observation equation is used for representing the relation between the state variable and the output of the target system, and the state equation comprises parameters to be identified; arranging the state-space equation as a first state-space equation which represents known parameters and contains to-be-identified parameters in a parameter separation form; matching with the first state-space equation, constructing a neural network model, the input and output of the neural network model corresponding to the input and output of the fi</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN116805161A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | System parameter identification method and device based on unsupervised learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T06%3A17%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHOU%20SIDA&rft.date=2023-09-26&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116805161A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |