Short-term power load prediction method, device and equipment

The embodiment of the invention provides a short-term power load prediction method, device and equipment. The method comprises the following steps: acquiring power demand time sequence data, and decomposing the data into a high-pass coefficient and a low-pass coefficient; respectively carrying out c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: CAI YINONG, DAI JING, GUO DAN, GUAN YAN, LU XINYI, ZHOU HANG, WANG YIMIAO, GAO XIYING, SUN JIAYIN, LIU YE, JIANG TING, ZHAO JIANBO, YANG WENYE, QU YINGNAN, YAN YIMING
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator CAI YINONG
DAI JING
GUO DAN
GUAN YAN
LU XINYI
ZHOU HANG
WANG YIMIAO
GAO XIYING
SUN JIAYIN
LIU YE
JIANG TING
ZHAO JIANBO
YANG WENYE
QU YINGNAN
YAN YIMING
description The embodiment of the invention provides a short-term power load prediction method, device and equipment. The method comprises the following steps: acquiring power demand time sequence data, and decomposing the data into a high-pass coefficient and a low-pass coefficient; respectively carrying out convolution with a wavelet function to obtain wavelet coefficients of different frequency bands, and arranging the wavelet coefficients in sequence to obtain an input feature vector; performing wavelet coefficient optimization on the input feature vector through a differential evolution algorithm to obtain a radial basis function neural network model based on the differential evolution optimization algorithm; performing parameter adjustment on the radial basis function neural network model based on the differential evolution optimization algorithm; and predicting the load at a future time point by using the parameter-adjusted radial basis function neural network model based on the differential evolution optimization
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116796639A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116796639A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116796639A3</originalsourceid><addsrcrecordid>eNrjZLANzsgvKtEtSS3KVSjIL08tUsjJT0xRKChKTclMLsnMz1PITS3JyE_RUUhJLctMTlVIzEtRSC0szSzITc0r4WFgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8c5-hoZm5pZmZsaWjsbEqAEAHh8wPw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Short-term power load prediction method, device and equipment</title><source>esp@cenet</source><creator>CAI YINONG ; DAI JING ; GUO DAN ; GUAN YAN ; LU XINYI ; ZHOU HANG ; WANG YIMIAO ; GAO XIYING ; SUN JIAYIN ; LIU YE ; JIANG TING ; ZHAO JIANBO ; YANG WENYE ; QU YINGNAN ; YAN YIMING</creator><creatorcontrib>CAI YINONG ; DAI JING ; GUO DAN ; GUAN YAN ; LU XINYI ; ZHOU HANG ; WANG YIMIAO ; GAO XIYING ; SUN JIAYIN ; LIU YE ; JIANG TING ; ZHAO JIANBO ; YANG WENYE ; QU YINGNAN ; YAN YIMING</creatorcontrib><description>The embodiment of the invention provides a short-term power load prediction method, device and equipment. The method comprises the following steps: acquiring power demand time sequence data, and decomposing the data into a high-pass coefficient and a low-pass coefficient; respectively carrying out convolution with a wavelet function to obtain wavelet coefficients of different frequency bands, and arranging the wavelet coefficients in sequence to obtain an input feature vector; performing wavelet coefficient optimization on the input feature vector through a differential evolution algorithm to obtain a radial basis function neural network model based on the differential evolution optimization algorithm; performing parameter adjustment on the radial basis function neural network model based on the differential evolution optimization algorithm; and predicting the load at a future time point by using the parameter-adjusted radial basis function neural network model based on the differential evolution optimization</description><language>chi ; eng</language><subject>CALCULATING ; CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; GENERATION ; PHYSICS ; SYSTEMS FOR STORING ELECTRIC ENERGY ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230922&amp;DB=EPODOC&amp;CC=CN&amp;NR=116796639A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230922&amp;DB=EPODOC&amp;CC=CN&amp;NR=116796639A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CAI YINONG</creatorcontrib><creatorcontrib>DAI JING</creatorcontrib><creatorcontrib>GUO DAN</creatorcontrib><creatorcontrib>GUAN YAN</creatorcontrib><creatorcontrib>LU XINYI</creatorcontrib><creatorcontrib>ZHOU HANG</creatorcontrib><creatorcontrib>WANG YIMIAO</creatorcontrib><creatorcontrib>GAO XIYING</creatorcontrib><creatorcontrib>SUN JIAYIN</creatorcontrib><creatorcontrib>LIU YE</creatorcontrib><creatorcontrib>JIANG TING</creatorcontrib><creatorcontrib>ZHAO JIANBO</creatorcontrib><creatorcontrib>YANG WENYE</creatorcontrib><creatorcontrib>QU YINGNAN</creatorcontrib><creatorcontrib>YAN YIMING</creatorcontrib><title>Short-term power load prediction method, device and equipment</title><description>The embodiment of the invention provides a short-term power load prediction method, device and equipment. The method comprises the following steps: acquiring power demand time sequence data, and decomposing the data into a high-pass coefficient and a low-pass coefficient; respectively carrying out convolution with a wavelet function to obtain wavelet coefficients of different frequency bands, and arranging the wavelet coefficients in sequence to obtain an input feature vector; performing wavelet coefficient optimization on the input feature vector through a differential evolution algorithm to obtain a radial basis function neural network model based on the differential evolution optimization algorithm; performing parameter adjustment on the radial basis function neural network model based on the differential evolution optimization algorithm; and predicting the load at a future time point by using the parameter-adjusted radial basis function neural network model based on the differential evolution optimization</description><subject>CALCULATING</subject><subject>CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>CONVERSION OR DISTRIBUTION OF ELECTRIC POWER</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>GENERATION</subject><subject>PHYSICS</subject><subject>SYSTEMS FOR STORING ELECTRIC ENERGY</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLANzsgvKtEtSS3KVSjIL08tUsjJT0xRKChKTclMLsnMz1PITS3JyE_RUUhJLctMTlVIzEtRSC0szSzITc0r4WFgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8c5-hoZm5pZmZsaWjsbEqAEAHh8wPw</recordid><startdate>20230922</startdate><enddate>20230922</enddate><creator>CAI YINONG</creator><creator>DAI JING</creator><creator>GUO DAN</creator><creator>GUAN YAN</creator><creator>LU XINYI</creator><creator>ZHOU HANG</creator><creator>WANG YIMIAO</creator><creator>GAO XIYING</creator><creator>SUN JIAYIN</creator><creator>LIU YE</creator><creator>JIANG TING</creator><creator>ZHAO JIANBO</creator><creator>YANG WENYE</creator><creator>QU YINGNAN</creator><creator>YAN YIMING</creator><scope>EVB</scope></search><sort><creationdate>20230922</creationdate><title>Short-term power load prediction method, device and equipment</title><author>CAI YINONG ; DAI JING ; GUO DAN ; GUAN YAN ; LU XINYI ; ZHOU HANG ; WANG YIMIAO ; GAO XIYING ; SUN JIAYIN ; LIU YE ; JIANG TING ; ZHAO JIANBO ; YANG WENYE ; QU YINGNAN ; YAN YIMING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116796639A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>CONVERSION OR DISTRIBUTION OF ELECTRIC POWER</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>GENERATION</topic><topic>PHYSICS</topic><topic>SYSTEMS FOR STORING ELECTRIC ENERGY</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>CAI YINONG</creatorcontrib><creatorcontrib>DAI JING</creatorcontrib><creatorcontrib>GUO DAN</creatorcontrib><creatorcontrib>GUAN YAN</creatorcontrib><creatorcontrib>LU XINYI</creatorcontrib><creatorcontrib>ZHOU HANG</creatorcontrib><creatorcontrib>WANG YIMIAO</creatorcontrib><creatorcontrib>GAO XIYING</creatorcontrib><creatorcontrib>SUN JIAYIN</creatorcontrib><creatorcontrib>LIU YE</creatorcontrib><creatorcontrib>JIANG TING</creatorcontrib><creatorcontrib>ZHAO JIANBO</creatorcontrib><creatorcontrib>YANG WENYE</creatorcontrib><creatorcontrib>QU YINGNAN</creatorcontrib><creatorcontrib>YAN YIMING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CAI YINONG</au><au>DAI JING</au><au>GUO DAN</au><au>GUAN YAN</au><au>LU XINYI</au><au>ZHOU HANG</au><au>WANG YIMIAO</au><au>GAO XIYING</au><au>SUN JIAYIN</au><au>LIU YE</au><au>JIANG TING</au><au>ZHAO JIANBO</au><au>YANG WENYE</au><au>QU YINGNAN</au><au>YAN YIMING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Short-term power load prediction method, device and equipment</title><date>2023-09-22</date><risdate>2023</risdate><abstract>The embodiment of the invention provides a short-term power load prediction method, device and equipment. The method comprises the following steps: acquiring power demand time sequence data, and decomposing the data into a high-pass coefficient and a low-pass coefficient; respectively carrying out convolution with a wavelet function to obtain wavelet coefficients of different frequency bands, and arranging the wavelet coefficients in sequence to obtain an input feature vector; performing wavelet coefficient optimization on the input feature vector through a differential evolution algorithm to obtain a radial basis function neural network model based on the differential evolution optimization algorithm; performing parameter adjustment on the radial basis function neural network model based on the differential evolution optimization algorithm; and predicting the load at a future time point by using the parameter-adjusted radial basis function neural network model based on the differential evolution optimization</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116796639A
source esp@cenet
subjects CALCULATING
CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
ELECTRICITY
GENERATION
PHYSICS
SYSTEMS FOR STORING ELECTRIC ENERGY
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Short-term power load prediction method, device and equipment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A28%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CAI%20YINONG&rft.date=2023-09-22&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116796639A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true