Industrial circulating water system water supply pump cross-domain fault diagnosis method based on information fusion and meta learning
The invention provides a cross-domain fault diagnosis method for a water supply pump of an industrial circulating water system, and the method comprises the following steps: firstly, collecting multidirectional vibration signals of a driving end and a non-driving end of a water supply pump motor thr...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | TANG WENYAN CHEN YIXUAN WU JIA LIANG CHENGJIANG LEI JUN HE XINRAN |
description | The invention provides a cross-domain fault diagnosis method for a water supply pump of an industrial circulating water system, and the method comprises the following steps: firstly, collecting multidirectional vibration signals of a driving end and a non-driving end of a water supply pump motor through a three-axis acceleration sensor, and achieving the information fusion of a plurality of sensor signals through the three-channel two-dimensional diagram of a one-dimensional vibration signal; a deep convolutional generative adversarial network is adopted to extract fault features, and an enhanced fault data set is generated; training the source domain fault data set by adopting a meta-learning method, learning common characteristics of a water supply pump fault diagnosis task, and optimizing network parameters of a target domain task; and a cross-domain fault diagnosis model is constructed, and fault diagnosis is carried out on water supply pumps of different models under complex working conditions. Aiming at |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116796193A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116796193A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116796193A3</originalsourceid><addsrcrecordid>eNqNjUEKwjAQRbtxIeodxgN0UQqVLqUounHlvozJtAaSScgkSE_gtW1B967e__D4f128r6yzpGjQgjJRZYvJ8AgvTBRBJknkfiWHYCcI2QVQ0YuU2js0DANmm0AbHNmLEXCUnl7DA4U0eAbDg49u3p3zkGUBsl40BEsYeT7cFqsBrdDuy02xP5_u3aWk4HuSgIqYUt_dqqo5tE3V1sf6H-cDVvlNHw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Industrial circulating water system water supply pump cross-domain fault diagnosis method based on information fusion and meta learning</title><source>esp@cenet</source><creator>TANG WENYAN ; CHEN YIXUAN ; WU JIA ; LIANG CHENGJIANG ; LEI JUN ; HE XINRAN</creator><creatorcontrib>TANG WENYAN ; CHEN YIXUAN ; WU JIA ; LIANG CHENGJIANG ; LEI JUN ; HE XINRAN</creatorcontrib><description>The invention provides a cross-domain fault diagnosis method for a water supply pump of an industrial circulating water system, and the method comprises the following steps: firstly, collecting multidirectional vibration signals of a driving end and a non-driving end of a water supply pump motor through a three-axis acceleration sensor, and achieving the information fusion of a plurality of sensor signals through the three-channel two-dimensional diagram of a one-dimensional vibration signal; a deep convolutional generative adversarial network is adopted to extract fault features, and an enhanced fault data set is generated; training the source domain fault data set by adopting a meta-learning method, learning common characteristics of a water supply pump fault diagnosis task, and optimizing network parameters of a target domain task; and a cross-domain fault diagnosis model is constructed, and fault diagnosis is carried out on water supply pumps of different models under complex working conditions. Aiming at</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230922&DB=EPODOC&CC=CN&NR=116796193A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230922&DB=EPODOC&CC=CN&NR=116796193A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>TANG WENYAN</creatorcontrib><creatorcontrib>CHEN YIXUAN</creatorcontrib><creatorcontrib>WU JIA</creatorcontrib><creatorcontrib>LIANG CHENGJIANG</creatorcontrib><creatorcontrib>LEI JUN</creatorcontrib><creatorcontrib>HE XINRAN</creatorcontrib><title>Industrial circulating water system water supply pump cross-domain fault diagnosis method based on information fusion and meta learning</title><description>The invention provides a cross-domain fault diagnosis method for a water supply pump of an industrial circulating water system, and the method comprises the following steps: firstly, collecting multidirectional vibration signals of a driving end and a non-driving end of a water supply pump motor through a three-axis acceleration sensor, and achieving the information fusion of a plurality of sensor signals through the three-channel two-dimensional diagram of a one-dimensional vibration signal; a deep convolutional generative adversarial network is adopted to extract fault features, and an enhanced fault data set is generated; training the source domain fault data set by adopting a meta-learning method, learning common characteristics of a water supply pump fault diagnosis task, and optimizing network parameters of a target domain task; and a cross-domain fault diagnosis model is constructed, and fault diagnosis is carried out on water supply pumps of different models under complex working conditions. Aiming at</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjUEKwjAQRbtxIeodxgN0UQqVLqUounHlvozJtAaSScgkSE_gtW1B967e__D4f128r6yzpGjQgjJRZYvJ8AgvTBRBJknkfiWHYCcI2QVQ0YuU2js0DANmm0AbHNmLEXCUnl7DA4U0eAbDg49u3p3zkGUBsl40BEsYeT7cFqsBrdDuy02xP5_u3aWk4HuSgIqYUt_dqqo5tE3V1sf6H-cDVvlNHw</recordid><startdate>20230922</startdate><enddate>20230922</enddate><creator>TANG WENYAN</creator><creator>CHEN YIXUAN</creator><creator>WU JIA</creator><creator>LIANG CHENGJIANG</creator><creator>LEI JUN</creator><creator>HE XINRAN</creator><scope>EVB</scope></search><sort><creationdate>20230922</creationdate><title>Industrial circulating water system water supply pump cross-domain fault diagnosis method based on information fusion and meta learning</title><author>TANG WENYAN ; CHEN YIXUAN ; WU JIA ; LIANG CHENGJIANG ; LEI JUN ; HE XINRAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116796193A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>TANG WENYAN</creatorcontrib><creatorcontrib>CHEN YIXUAN</creatorcontrib><creatorcontrib>WU JIA</creatorcontrib><creatorcontrib>LIANG CHENGJIANG</creatorcontrib><creatorcontrib>LEI JUN</creatorcontrib><creatorcontrib>HE XINRAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>TANG WENYAN</au><au>CHEN YIXUAN</au><au>WU JIA</au><au>LIANG CHENGJIANG</au><au>LEI JUN</au><au>HE XINRAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Industrial circulating water system water supply pump cross-domain fault diagnosis method based on information fusion and meta learning</title><date>2023-09-22</date><risdate>2023</risdate><abstract>The invention provides a cross-domain fault diagnosis method for a water supply pump of an industrial circulating water system, and the method comprises the following steps: firstly, collecting multidirectional vibration signals of a driving end and a non-driving end of a water supply pump motor through a three-axis acceleration sensor, and achieving the information fusion of a plurality of sensor signals through the three-channel two-dimensional diagram of a one-dimensional vibration signal; a deep convolutional generative adversarial network is adopted to extract fault features, and an enhanced fault data set is generated; training the source domain fault data set by adopting a meta-learning method, learning common characteristics of a water supply pump fault diagnosis task, and optimizing network parameters of a target domain task; and a cross-domain fault diagnosis model is constructed, and fault diagnosis is carried out on water supply pumps of different models under complex working conditions. Aiming at</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN116796193A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Industrial circulating water system water supply pump cross-domain fault diagnosis method based on information fusion and meta learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T10%3A37%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=TANG%20WENYAN&rft.date=2023-09-22&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116796193A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |