Personalized federal learning method, device and system based on global feature sharing
The invention relates to a personalized federal learning method, device and system based on global feature sharing. The personalized federal learning method based on global feature sharing is applied to a client, and comprises the following steps: receiving a global feature extractor model and globa...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LI CHENGLIN XIONG HONGKAI ZHANG HAO ZOU JUNNI DAI WENRUI |
description | The invention relates to a personalized federal learning method, device and system based on global feature sharing. The personalized federal learning method based on global feature sharing is applied to a client, and comprises the following steps: receiving a global feature extractor model and global features sent by a server; initializing a local model according to the global feature extractor model and the local classifier model; the local image data are input into the initialized local model for model training, a loss function of the local model is determined, and the loss function comprises cross entropy loss between a training label and a real label of the local image data and a conditional mutual information regular term; according to the loss function of the local model, performing first updating processing on the local model based on back propagation; and when the local model converges, determining a target local model. According to the method, the global features and the conditional mutual informatio |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116777015A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116777015A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116777015A3</originalsourceid><addsrcrecordid>eNqNy7EKwjAURuEsDqK-w3VXMIh2LkVxEgfBsdw2f9pCmpTcKOjTm8EHcDrL-ebqcUOU4NkNHxiyMIjsyIGjH3xHI1IfzIYMXkMLYm9I3pIwUsOSQfDUudBkYsHpGUHSc8xyqWaWnWD160Ktz6d7ddliCjVk4hYeqa6uWh-LotjpQ7n_5_kCVy050Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Personalized federal learning method, device and system based on global feature sharing</title><source>esp@cenet</source><creator>LI CHENGLIN ; XIONG HONGKAI ; ZHANG HAO ; ZOU JUNNI ; DAI WENRUI</creator><creatorcontrib>LI CHENGLIN ; XIONG HONGKAI ; ZHANG HAO ; ZOU JUNNI ; DAI WENRUI</creatorcontrib><description>The invention relates to a personalized federal learning method, device and system based on global feature sharing. The personalized federal learning method based on global feature sharing is applied to a client, and comprises the following steps: receiving a global feature extractor model and global features sent by a server; initializing a local model according to the global feature extractor model and the local classifier model; the local image data are input into the initialized local model for model training, a loss function of the local model is determined, and the loss function comprises cross entropy loss between a training label and a real label of the local image data and a conditional mutual information regular term; according to the loss function of the local model, performing first updating processing on the local model based on back propagation; and when the local model converges, determining a target local model. According to the method, the global features and the conditional mutual informatio</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230919&DB=EPODOC&CC=CN&NR=116777015A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76418</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230919&DB=EPODOC&CC=CN&NR=116777015A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LI CHENGLIN</creatorcontrib><creatorcontrib>XIONG HONGKAI</creatorcontrib><creatorcontrib>ZHANG HAO</creatorcontrib><creatorcontrib>ZOU JUNNI</creatorcontrib><creatorcontrib>DAI WENRUI</creatorcontrib><title>Personalized federal learning method, device and system based on global feature sharing</title><description>The invention relates to a personalized federal learning method, device and system based on global feature sharing. The personalized federal learning method based on global feature sharing is applied to a client, and comprises the following steps: receiving a global feature extractor model and global features sent by a server; initializing a local model according to the global feature extractor model and the local classifier model; the local image data are input into the initialized local model for model training, a loss function of the local model is determined, and the loss function comprises cross entropy loss between a training label and a real label of the local image data and a conditional mutual information regular term; according to the loss function of the local model, performing first updating processing on the local model based on back propagation; and when the local model converges, determining a target local model. According to the method, the global features and the conditional mutual informatio</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNy7EKwjAURuEsDqK-w3VXMIh2LkVxEgfBsdw2f9pCmpTcKOjTm8EHcDrL-ebqcUOU4NkNHxiyMIjsyIGjH3xHI1IfzIYMXkMLYm9I3pIwUsOSQfDUudBkYsHpGUHSc8xyqWaWnWD160Ktz6d7ddliCjVk4hYeqa6uWh-LotjpQ7n_5_kCVy050Q</recordid><startdate>20230919</startdate><enddate>20230919</enddate><creator>LI CHENGLIN</creator><creator>XIONG HONGKAI</creator><creator>ZHANG HAO</creator><creator>ZOU JUNNI</creator><creator>DAI WENRUI</creator><scope>EVB</scope></search><sort><creationdate>20230919</creationdate><title>Personalized federal learning method, device and system based on global feature sharing</title><author>LI CHENGLIN ; XIONG HONGKAI ; ZHANG HAO ; ZOU JUNNI ; DAI WENRUI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116777015A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LI CHENGLIN</creatorcontrib><creatorcontrib>XIONG HONGKAI</creatorcontrib><creatorcontrib>ZHANG HAO</creatorcontrib><creatorcontrib>ZOU JUNNI</creatorcontrib><creatorcontrib>DAI WENRUI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LI CHENGLIN</au><au>XIONG HONGKAI</au><au>ZHANG HAO</au><au>ZOU JUNNI</au><au>DAI WENRUI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Personalized federal learning method, device and system based on global feature sharing</title><date>2023-09-19</date><risdate>2023</risdate><abstract>The invention relates to a personalized federal learning method, device and system based on global feature sharing. The personalized federal learning method based on global feature sharing is applied to a client, and comprises the following steps: receiving a global feature extractor model and global features sent by a server; initializing a local model according to the global feature extractor model and the local classifier model; the local image data are input into the initialized local model for model training, a loss function of the local model is determined, and the loss function comprises cross entropy loss between a training label and a real label of the local image data and a conditional mutual information regular term; according to the loss function of the local model, performing first updating processing on the local model based on back propagation; and when the local model converges, determining a target local model. According to the method, the global features and the conditional mutual informatio</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN116777015A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | Personalized federal learning method, device and system based on global feature sharing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A22%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LI%20CHENGLIN&rft.date=2023-09-19&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116777015A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |