Training method of video behavior recognition model, and video behavior recognition method and device
The invention provides a training method of a video behavior recognition model, and a video behavior recognition method and device. A specific embodiment of the method comprises the steps of inputting a sample image sequence corresponding to a sample video stream into an initial behavior recognition...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | DONG SHUAI YE RUNYUAN ZOU KUN FENG ZIJU LI WENSHENG XIONG KUNKUN |
description | The invention provides a training method of a video behavior recognition model, and a video behavior recognition method and device. A specific embodiment of the method comprises the steps of inputting a sample image sequence corresponding to a sample video stream into an initial behavior recognition model; the sample video stream comprises a source domain sample video stream and a target domain sample video stream; the initial behavior recognition model comprises a classifier and a plurality of domain discriminators; aligning the features of the sample image sequence on different scales by using the plurality of domain discriminators to obtain a domain discrimination result; and training the initial behavior recognition model based on a classification result output by the classifier for the source domain sample video stream and domain discrimination results output by the plurality of domain discriminators. According to the method, the difference between the source domain sample video data and the target domai |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116758370A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116758370A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116758370A3</originalsourceid><addsrcrecordid>eNrjZEgNKUrMzMvMS1fITS3JyE9RyE9TKMtMSc1XSErNSCzLzC9SKEpNzk_PyyzJzM9TyM1PSc3RUUjMS8GrCmIUSFVKallmcioPA2taYk5xKi-U5mZQdHMNcfbQTS3Ij08tLkhMTs1LLYl39jM0NDM3tTA2N3A0JkYNACKSPy4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Training method of video behavior recognition model, and video behavior recognition method and device</title><source>esp@cenet</source><creator>DONG SHUAI ; YE RUNYUAN ; ZOU KUN ; FENG ZIJU ; LI WENSHENG ; XIONG KUNKUN</creator><creatorcontrib>DONG SHUAI ; YE RUNYUAN ; ZOU KUN ; FENG ZIJU ; LI WENSHENG ; XIONG KUNKUN</creatorcontrib><description>The invention provides a training method of a video behavior recognition model, and a video behavior recognition method and device. A specific embodiment of the method comprises the steps of inputting a sample image sequence corresponding to a sample video stream into an initial behavior recognition model; the sample video stream comprises a source domain sample video stream and a target domain sample video stream; the initial behavior recognition model comprises a classifier and a plurality of domain discriminators; aligning the features of the sample image sequence on different scales by using the plurality of domain discriminators to obtain a domain discrimination result; and training the initial behavior recognition model based on a classification result output by the classifier for the source domain sample video stream and domain discrimination results output by the plurality of domain discriminators. According to the method, the difference between the source domain sample video data and the target domai</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230915&DB=EPODOC&CC=CN&NR=116758370A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230915&DB=EPODOC&CC=CN&NR=116758370A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>DONG SHUAI</creatorcontrib><creatorcontrib>YE RUNYUAN</creatorcontrib><creatorcontrib>ZOU KUN</creatorcontrib><creatorcontrib>FENG ZIJU</creatorcontrib><creatorcontrib>LI WENSHENG</creatorcontrib><creatorcontrib>XIONG KUNKUN</creatorcontrib><title>Training method of video behavior recognition model, and video behavior recognition method and device</title><description>The invention provides a training method of a video behavior recognition model, and a video behavior recognition method and device. A specific embodiment of the method comprises the steps of inputting a sample image sequence corresponding to a sample video stream into an initial behavior recognition model; the sample video stream comprises a source domain sample video stream and a target domain sample video stream; the initial behavior recognition model comprises a classifier and a plurality of domain discriminators; aligning the features of the sample image sequence on different scales by using the plurality of domain discriminators to obtain a domain discrimination result; and training the initial behavior recognition model based on a classification result output by the classifier for the source domain sample video stream and domain discrimination results output by the plurality of domain discriminators. According to the method, the difference between the source domain sample video data and the target domai</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZEgNKUrMzMvMS1fITS3JyE9RyE9TKMtMSc1XSErNSCzLzC9SKEpNzk_PyyzJzM9TyM1PSc3RUUjMS8GrCmIUSFVKallmcioPA2taYk5xKi-U5mZQdHMNcfbQTS3Ij08tLkhMTs1LLYl39jM0NDM3tTA2N3A0JkYNACKSPy4</recordid><startdate>20230915</startdate><enddate>20230915</enddate><creator>DONG SHUAI</creator><creator>YE RUNYUAN</creator><creator>ZOU KUN</creator><creator>FENG ZIJU</creator><creator>LI WENSHENG</creator><creator>XIONG KUNKUN</creator><scope>EVB</scope></search><sort><creationdate>20230915</creationdate><title>Training method of video behavior recognition model, and video behavior recognition method and device</title><author>DONG SHUAI ; YE RUNYUAN ; ZOU KUN ; FENG ZIJU ; LI WENSHENG ; XIONG KUNKUN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116758370A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>DONG SHUAI</creatorcontrib><creatorcontrib>YE RUNYUAN</creatorcontrib><creatorcontrib>ZOU KUN</creatorcontrib><creatorcontrib>FENG ZIJU</creatorcontrib><creatorcontrib>LI WENSHENG</creatorcontrib><creatorcontrib>XIONG KUNKUN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>DONG SHUAI</au><au>YE RUNYUAN</au><au>ZOU KUN</au><au>FENG ZIJU</au><au>LI WENSHENG</au><au>XIONG KUNKUN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Training method of video behavior recognition model, and video behavior recognition method and device</title><date>2023-09-15</date><risdate>2023</risdate><abstract>The invention provides a training method of a video behavior recognition model, and a video behavior recognition method and device. A specific embodiment of the method comprises the steps of inputting a sample image sequence corresponding to a sample video stream into an initial behavior recognition model; the sample video stream comprises a source domain sample video stream and a target domain sample video stream; the initial behavior recognition model comprises a classifier and a plurality of domain discriminators; aligning the features of the sample image sequence on different scales by using the plurality of domain discriminators to obtain a domain discrimination result; and training the initial behavior recognition model based on a classification result output by the classifier for the source domain sample video stream and domain discrimination results output by the plurality of domain discriminators. According to the method, the difference between the source domain sample video data and the target domai</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN116758370A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | Training method of video behavior recognition model, and video behavior recognition method and device |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A50%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=DONG%20SHUAI&rft.date=2023-09-15&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116758370A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |