Ship target detection method based on improved DCN
The invention discloses a ship target detection method based on an improved DCN, and the method comprises the steps: selecting a remote sensing image data set with a marking file containing direction information as an input image, and carrying out the random overturning and filling of the input imag...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | XU SHUFANG MAO YINGCHI WANG LONGBAO XU HUIHUA SHEN YICAN ZHANG XUEJIE GAO HONGMIN CHU HONGQIANG |
description | The invention discloses a ship target detection method based on an improved DCN, and the method comprises the steps: selecting a remote sensing image data set with a marking file containing direction information as an input image, and carrying out the random overturning and filling of the input image; preprocessing the input image, and dividing the input image into a training set, a verification set and a test set; inputting the training set into the improved DCN model for training; inputting the test set into the trained improved DCN model, detecting the remote sensing image to obtain a directed bounding box, and detecting a ship target; according to the invention, the DCN is adopted to obtain the offset of the point set, the APAM module is adopted to screen positive samples, the SPP module is introduced to realize the fusion between local features and global features, the correlation of classification and positioning is further enhanced, the acquisition of high-quality samples is ensured, and the high-preci |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116740568A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116740568A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116740568A3</originalsourceid><addsrcrecordid>eNrjZDAKzsgsUChJLEpPLVFISS1JTS7JzM9TyE0tychPUUhKLE5NUQDyM3MLivLLgGwXZz8eBta0xJziVF4ozc2g6OYa4uyhm1qQH59aXJCYnJqXWhLv7GdoaGZuYmBqZuFoTIwaAI5iK3c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Ship target detection method based on improved DCN</title><source>esp@cenet</source><creator>XU SHUFANG ; MAO YINGCHI ; WANG LONGBAO ; XU HUIHUA ; SHEN YICAN ; ZHANG XUEJIE ; GAO HONGMIN ; CHU HONGQIANG</creator><creatorcontrib>XU SHUFANG ; MAO YINGCHI ; WANG LONGBAO ; XU HUIHUA ; SHEN YICAN ; ZHANG XUEJIE ; GAO HONGMIN ; CHU HONGQIANG</creatorcontrib><description>The invention discloses a ship target detection method based on an improved DCN, and the method comprises the steps: selecting a remote sensing image data set with a marking file containing direction information as an input image, and carrying out the random overturning and filling of the input image; preprocessing the input image, and dividing the input image into a training set, a verification set and a test set; inputting the training set into the improved DCN model for training; inputting the test set into the trained improved DCN model, detecting the remote sensing image to obtain a directed bounding box, and detecting a ship target; according to the invention, the DCN is adopted to obtain the offset of the point set, the APAM module is adopted to screen positive samples, the SPP module is introduced to realize the fusion between local features and global features, the correlation of classification and positioning is further enhanced, the acquisition of high-quality samples is ensured, and the high-preci</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230912&DB=EPODOC&CC=CN&NR=116740568A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230912&DB=EPODOC&CC=CN&NR=116740568A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XU SHUFANG</creatorcontrib><creatorcontrib>MAO YINGCHI</creatorcontrib><creatorcontrib>WANG LONGBAO</creatorcontrib><creatorcontrib>XU HUIHUA</creatorcontrib><creatorcontrib>SHEN YICAN</creatorcontrib><creatorcontrib>ZHANG XUEJIE</creatorcontrib><creatorcontrib>GAO HONGMIN</creatorcontrib><creatorcontrib>CHU HONGQIANG</creatorcontrib><title>Ship target detection method based on improved DCN</title><description>The invention discloses a ship target detection method based on an improved DCN, and the method comprises the steps: selecting a remote sensing image data set with a marking file containing direction information as an input image, and carrying out the random overturning and filling of the input image; preprocessing the input image, and dividing the input image into a training set, a verification set and a test set; inputting the training set into the improved DCN model for training; inputting the test set into the trained improved DCN model, detecting the remote sensing image to obtain a directed bounding box, and detecting a ship target; according to the invention, the DCN is adopted to obtain the offset of the point set, the APAM module is adopted to screen positive samples, the SPP module is introduced to realize the fusion between local features and global features, the correlation of classification and positioning is further enhanced, the acquisition of high-quality samples is ensured, and the high-preci</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDAKzsgsUChJLEpPLVFISS1JTS7JzM9TyE0tychPUUhKLE5NUQDyM3MLivLLgGwXZz8eBta0xJziVF4ozc2g6OYa4uyhm1qQH59aXJCYnJqXWhLv7GdoaGZuYmBqZuFoTIwaAI5iK3c</recordid><startdate>20230912</startdate><enddate>20230912</enddate><creator>XU SHUFANG</creator><creator>MAO YINGCHI</creator><creator>WANG LONGBAO</creator><creator>XU HUIHUA</creator><creator>SHEN YICAN</creator><creator>ZHANG XUEJIE</creator><creator>GAO HONGMIN</creator><creator>CHU HONGQIANG</creator><scope>EVB</scope></search><sort><creationdate>20230912</creationdate><title>Ship target detection method based on improved DCN</title><author>XU SHUFANG ; MAO YINGCHI ; WANG LONGBAO ; XU HUIHUA ; SHEN YICAN ; ZHANG XUEJIE ; GAO HONGMIN ; CHU HONGQIANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116740568A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>XU SHUFANG</creatorcontrib><creatorcontrib>MAO YINGCHI</creatorcontrib><creatorcontrib>WANG LONGBAO</creatorcontrib><creatorcontrib>XU HUIHUA</creatorcontrib><creatorcontrib>SHEN YICAN</creatorcontrib><creatorcontrib>ZHANG XUEJIE</creatorcontrib><creatorcontrib>GAO HONGMIN</creatorcontrib><creatorcontrib>CHU HONGQIANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XU SHUFANG</au><au>MAO YINGCHI</au><au>WANG LONGBAO</au><au>XU HUIHUA</au><au>SHEN YICAN</au><au>ZHANG XUEJIE</au><au>GAO HONGMIN</au><au>CHU HONGQIANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Ship target detection method based on improved DCN</title><date>2023-09-12</date><risdate>2023</risdate><abstract>The invention discloses a ship target detection method based on an improved DCN, and the method comprises the steps: selecting a remote sensing image data set with a marking file containing direction information as an input image, and carrying out the random overturning and filling of the input image; preprocessing the input image, and dividing the input image into a training set, a verification set and a test set; inputting the training set into the improved DCN model for training; inputting the test set into the trained improved DCN model, detecting the remote sensing image to obtain a directed bounding box, and detecting a ship target; according to the invention, the DCN is adopted to obtain the offset of the point set, the APAM module is adopted to screen positive samples, the SPP module is introduced to realize the fusion between local features and global features, the correlation of classification and positioning is further enhanced, the acquisition of high-quality samples is ensured, and the high-preci</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN116740568A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | Ship target detection method based on improved DCN |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A34%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XU%20SHUFANG&rft.date=2023-09-12&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116740568A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |