Domestic garbage image classification model training method and device based on comparative learning
The invention discloses a household garbage image classification model training method and device based on comparative learning, and relates to the technical field of garbage classification. Household garbage images in a training set are subjected to two kinds of image preprocessing, and an anchor p...
Gespeichert in:
Hauptverfasser: | , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | PENG LIJIA ZHOU XIANG ZHANG LEI XIA PENGFEI GU YUE ZHANG YANYAN TANG MINGLIANG WU TENGYUE WEI CHUYUAN |
description | The invention discloses a household garbage image classification model training method and device based on comparative learning, and relates to the technical field of garbage classification. Household garbage images in a training set are subjected to two kinds of image preprocessing, and an anchor point data set and a positive and negative sample set are obtained; respectively inputting the anchor point data set and the positive and negative sample sets into a comparative learning encoder and a momentum encoder, extracting multi-scale features of an encoder backbone network through a Hash feature fusion method, and generating corresponding global Hash codes; inputting the global hash code into a linear dependency group query full-connection embedded class decoder to obtain a corresponding class feature vector; calculating parameter center rebalance self-adaptive comparison loss according to category feature vector similarity; household garbage images are classified according to the comparison loss, and a hous |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116704293A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116704293A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116704293A3</originalsourceid><addsrcrecordid>eNqNyzsKwkAUheFpLETdw3UBgjGiWEpUrKzsw83MSbwwL2aGrN8EXIDN-ZvvLJW5BYdcRNPAqeMBJG5ebTln6UVzkeDJBQNLJbF48QM5lE8wxN6QwSga1HGGoUnq4CKn6TWCLDjNfq0WPduMza8rtX3c381zhxha5MgaHqVtXlV1Ou-Ph0t9rf8xX_C0PvU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Domestic garbage image classification model training method and device based on comparative learning</title><source>esp@cenet</source><creator>PENG LIJIA ; ZHOU XIANG ; ZHANG LEI ; XIA PENGFEI ; GU YUE ; ZHANG YANYAN ; TANG MINGLIANG ; WU TENGYUE ; WEI CHUYUAN</creator><creatorcontrib>PENG LIJIA ; ZHOU XIANG ; ZHANG LEI ; XIA PENGFEI ; GU YUE ; ZHANG YANYAN ; TANG MINGLIANG ; WU TENGYUE ; WEI CHUYUAN</creatorcontrib><description>The invention discloses a household garbage image classification model training method and device based on comparative learning, and relates to the technical field of garbage classification. Household garbage images in a training set are subjected to two kinds of image preprocessing, and an anchor point data set and a positive and negative sample set are obtained; respectively inputting the anchor point data set and the positive and negative sample sets into a comparative learning encoder and a momentum encoder, extracting multi-scale features of an encoder backbone network through a Hash feature fusion method, and generating corresponding global Hash codes; inputting the global hash code into a linear dependency group query full-connection embedded class decoder to obtain a corresponding class feature vector; calculating parameter center rebalance self-adaptive comparison loss according to category feature vector similarity; household garbage images are classified according to the comparison loss, and a hous</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230905&DB=EPODOC&CC=CN&NR=116704293A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230905&DB=EPODOC&CC=CN&NR=116704293A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>PENG LIJIA</creatorcontrib><creatorcontrib>ZHOU XIANG</creatorcontrib><creatorcontrib>ZHANG LEI</creatorcontrib><creatorcontrib>XIA PENGFEI</creatorcontrib><creatorcontrib>GU YUE</creatorcontrib><creatorcontrib>ZHANG YANYAN</creatorcontrib><creatorcontrib>TANG MINGLIANG</creatorcontrib><creatorcontrib>WU TENGYUE</creatorcontrib><creatorcontrib>WEI CHUYUAN</creatorcontrib><title>Domestic garbage image classification model training method and device based on comparative learning</title><description>The invention discloses a household garbage image classification model training method and device based on comparative learning, and relates to the technical field of garbage classification. Household garbage images in a training set are subjected to two kinds of image preprocessing, and an anchor point data set and a positive and negative sample set are obtained; respectively inputting the anchor point data set and the positive and negative sample sets into a comparative learning encoder and a momentum encoder, extracting multi-scale features of an encoder backbone network through a Hash feature fusion method, and generating corresponding global Hash codes; inputting the global hash code into a linear dependency group query full-connection embedded class decoder to obtain a corresponding class feature vector; calculating parameter center rebalance self-adaptive comparison loss according to category feature vector similarity; household garbage images are classified according to the comparison loss, and a hous</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyzsKwkAUheFpLETdw3UBgjGiWEpUrKzsw83MSbwwL2aGrN8EXIDN-ZvvLJW5BYdcRNPAqeMBJG5ebTln6UVzkeDJBQNLJbF48QM5lE8wxN6QwSga1HGGoUnq4CKn6TWCLDjNfq0WPduMza8rtX3c381zhxha5MgaHqVtXlV1Ou-Ph0t9rf8xX_C0PvU</recordid><startdate>20230905</startdate><enddate>20230905</enddate><creator>PENG LIJIA</creator><creator>ZHOU XIANG</creator><creator>ZHANG LEI</creator><creator>XIA PENGFEI</creator><creator>GU YUE</creator><creator>ZHANG YANYAN</creator><creator>TANG MINGLIANG</creator><creator>WU TENGYUE</creator><creator>WEI CHUYUAN</creator><scope>EVB</scope></search><sort><creationdate>20230905</creationdate><title>Domestic garbage image classification model training method and device based on comparative learning</title><author>PENG LIJIA ; ZHOU XIANG ; ZHANG LEI ; XIA PENGFEI ; GU YUE ; ZHANG YANYAN ; TANG MINGLIANG ; WU TENGYUE ; WEI CHUYUAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116704293A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>PENG LIJIA</creatorcontrib><creatorcontrib>ZHOU XIANG</creatorcontrib><creatorcontrib>ZHANG LEI</creatorcontrib><creatorcontrib>XIA PENGFEI</creatorcontrib><creatorcontrib>GU YUE</creatorcontrib><creatorcontrib>ZHANG YANYAN</creatorcontrib><creatorcontrib>TANG MINGLIANG</creatorcontrib><creatorcontrib>WU TENGYUE</creatorcontrib><creatorcontrib>WEI CHUYUAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>PENG LIJIA</au><au>ZHOU XIANG</au><au>ZHANG LEI</au><au>XIA PENGFEI</au><au>GU YUE</au><au>ZHANG YANYAN</au><au>TANG MINGLIANG</au><au>WU TENGYUE</au><au>WEI CHUYUAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Domestic garbage image classification model training method and device based on comparative learning</title><date>2023-09-05</date><risdate>2023</risdate><abstract>The invention discloses a household garbage image classification model training method and device based on comparative learning, and relates to the technical field of garbage classification. Household garbage images in a training set are subjected to two kinds of image preprocessing, and an anchor point data set and a positive and negative sample set are obtained; respectively inputting the anchor point data set and the positive and negative sample sets into a comparative learning encoder and a momentum encoder, extracting multi-scale features of an encoder backbone network through a Hash feature fusion method, and generating corresponding global Hash codes; inputting the global hash code into a linear dependency group query full-connection embedded class decoder to obtain a corresponding class feature vector; calculating parameter center rebalance self-adaptive comparison loss according to category feature vector similarity; household garbage images are classified according to the comparison loss, and a hous</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN116704293A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | Domestic garbage image classification model training method and device based on comparative learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A14%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=PENG%20LIJIA&rft.date=2023-09-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116704293A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |