Heart rate variability characteristic analysis method based on deep learning

The invention discloses a heart rate variability characteristic analysis method based on deep learning, and relates to the field of computers. Information contained in heart rate variability can be effectively extracted. The method comprises the following steps: acquiring electrocardiogram data thro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: HE JIAN, YANG QINWEI, JIANG SHENGSHENG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator HE JIAN
YANG QINWEI
JIANG SHENGSHENG
description The invention discloses a heart rate variability characteristic analysis method based on deep learning, and relates to the field of computers. Information contained in heart rate variability can be effectively extracted. The method comprises the following steps: acquiring electrocardiogram data through a sensor, and transmitting the electrocardiogram data to an upper computer; preprocessing the ECG signal by applying interpolation and filtering; intercepting the received ECG data by adopting a sliding window, and performing real-time updating and Fourier transform to obtain a frequency spectrum feature map; and analyzing the spectrogram and extracting useful information by using a deep convolutional neural network, including frequency domain feature extraction based on a Resnet18 residual learning method and time-frequency domain feature fusion based on an attention mechanism, and classifying and outputting feature information by using a multi-layer perceptron. 一种基于深度学习的心率变异性特征分析方法涉及计算机领域,能够有效提取心率变异性中包含的信息。本发
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116702056A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116702056A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116702056A3</originalsourceid><addsrcrecordid>eNqNzLEKwjAURuEsDqK-w_UBhFaxzlKUDuLkXm6T3_ZCTEJyEfr2OvgATmf5OEtz68BZKbOC3pyFB_GiM9mJM1tFlqJiiQP7uUihF3SKjgYucBQDOSCR_z6ChHFtFk_2BZtfV2Z7vTzabocUe5TEFgHat_e6bk7Vvjo258M_5gO_WjYD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Heart rate variability characteristic analysis method based on deep learning</title><source>esp@cenet</source><creator>HE JIAN ; YANG QINWEI ; JIANG SHENGSHENG</creator><creatorcontrib>HE JIAN ; YANG QINWEI ; JIANG SHENGSHENG</creatorcontrib><description>The invention discloses a heart rate variability characteristic analysis method based on deep learning, and relates to the field of computers. Information contained in heart rate variability can be effectively extracted. The method comprises the following steps: acquiring electrocardiogram data through a sensor, and transmitting the electrocardiogram data to an upper computer; preprocessing the ECG signal by applying interpolation and filtering; intercepting the received ECG data by adopting a sliding window, and performing real-time updating and Fourier transform to obtain a frequency spectrum feature map; and analyzing the spectrogram and extracting useful information by using a deep convolutional neural network, including frequency domain feature extraction based on a Resnet18 residual learning method and time-frequency domain feature fusion based on an attention mechanism, and classifying and outputting feature information by using a multi-layer perceptron. 一种基于深度学习的心率变异性特征分析方法涉及计算机领域,能够有效提取心率变异性中包含的信息。本发</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DIAGNOSIS ; ELECTRIC DIGITAL DATA PROCESSING ; HUMAN NECESSITIES ; HYGIENE ; IDENTIFICATION ; MEDICAL OR VETERINARY SCIENCE ; PHYSICS ; SURGERY</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230905&amp;DB=EPODOC&amp;CC=CN&amp;NR=116702056A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76418</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230905&amp;DB=EPODOC&amp;CC=CN&amp;NR=116702056A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HE JIAN</creatorcontrib><creatorcontrib>YANG QINWEI</creatorcontrib><creatorcontrib>JIANG SHENGSHENG</creatorcontrib><title>Heart rate variability characteristic analysis method based on deep learning</title><description>The invention discloses a heart rate variability characteristic analysis method based on deep learning, and relates to the field of computers. Information contained in heart rate variability can be effectively extracted. The method comprises the following steps: acquiring electrocardiogram data through a sensor, and transmitting the electrocardiogram data to an upper computer; preprocessing the ECG signal by applying interpolation and filtering; intercepting the received ECG data by adopting a sliding window, and performing real-time updating and Fourier transform to obtain a frequency spectrum feature map; and analyzing the spectrogram and extracting useful information by using a deep convolutional neural network, including frequency domain feature extraction based on a Resnet18 residual learning method and time-frequency domain feature fusion based on an attention mechanism, and classifying and outputting feature information by using a multi-layer perceptron. 一种基于深度学习的心率变异性特征分析方法涉及计算机领域,能够有效提取心率变异性中包含的信息。本发</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DIAGNOSIS</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HUMAN NECESSITIES</subject><subject>HYGIENE</subject><subject>IDENTIFICATION</subject><subject>MEDICAL OR VETERINARY SCIENCE</subject><subject>PHYSICS</subject><subject>SURGERY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzLEKwjAURuEsDqK-w_UBhFaxzlKUDuLkXm6T3_ZCTEJyEfr2OvgATmf5OEtz68BZKbOC3pyFB_GiM9mJM1tFlqJiiQP7uUihF3SKjgYucBQDOSCR_z6ChHFtFk_2BZtfV2Z7vTzabocUe5TEFgHat_e6bk7Vvjo258M_5gO_WjYD</recordid><startdate>20230905</startdate><enddate>20230905</enddate><creator>HE JIAN</creator><creator>YANG QINWEI</creator><creator>JIANG SHENGSHENG</creator><scope>EVB</scope></search><sort><creationdate>20230905</creationdate><title>Heart rate variability characteristic analysis method based on deep learning</title><author>HE JIAN ; YANG QINWEI ; JIANG SHENGSHENG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116702056A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DIAGNOSIS</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HUMAN NECESSITIES</topic><topic>HYGIENE</topic><topic>IDENTIFICATION</topic><topic>MEDICAL OR VETERINARY SCIENCE</topic><topic>PHYSICS</topic><topic>SURGERY</topic><toplevel>online_resources</toplevel><creatorcontrib>HE JIAN</creatorcontrib><creatorcontrib>YANG QINWEI</creatorcontrib><creatorcontrib>JIANG SHENGSHENG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HE JIAN</au><au>YANG QINWEI</au><au>JIANG SHENGSHENG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Heart rate variability characteristic analysis method based on deep learning</title><date>2023-09-05</date><risdate>2023</risdate><abstract>The invention discloses a heart rate variability characteristic analysis method based on deep learning, and relates to the field of computers. Information contained in heart rate variability can be effectively extracted. The method comprises the following steps: acquiring electrocardiogram data through a sensor, and transmitting the electrocardiogram data to an upper computer; preprocessing the ECG signal by applying interpolation and filtering; intercepting the received ECG data by adopting a sliding window, and performing real-time updating and Fourier transform to obtain a frequency spectrum feature map; and analyzing the spectrogram and extracting useful information by using a deep convolutional neural network, including frequency domain feature extraction based on a Resnet18 residual learning method and time-frequency domain feature fusion based on an attention mechanism, and classifying and outputting feature information by using a multi-layer perceptron. 一种基于深度学习的心率变异性特征分析方法涉及计算机领域,能够有效提取心率变异性中包含的信息。本发</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116702056A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DIAGNOSIS
ELECTRIC DIGITAL DATA PROCESSING
HUMAN NECESSITIES
HYGIENE
IDENTIFICATION
MEDICAL OR VETERINARY SCIENCE
PHYSICS
SURGERY
title Heart rate variability characteristic analysis method based on deep learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A42%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HE%20JIAN&rft.date=2023-09-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116702056A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true