Traffic accident data quality enhancement method based on generative adversarial network

The invention discloses a traffic accident data quality enhancement method based on a generative adversarial network, and the method comprises the steps: S2, carrying out the preprocessing of a traffic accident data set, and obtaining a preprocessed data set; s3, performing data filling on the prepr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHANG SHENGRUI, ZHANG YING, ZHOU BEI, LI JIALU, YU YANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHANG SHENGRUI
ZHANG YING
ZHOU BEI
LI JIALU
YU YANG
description The invention discloses a traffic accident data quality enhancement method based on a generative adversarial network, and the method comprises the steps: S2, carrying out the preprocessing of a traffic accident data set, and obtaining a preprocessed data set; s3, performing data filling on the preprocessed data set by using a generative interpolation network to obtain a filled data set; s4, judging whether the filled data set meets a preset filling effect or not, and if yes, entering S5; otherwise, returning to S3; s5, performing data balancing processing on data with unbalanced categories in the filled data set to obtain a data set after data balancing processing; and S6, judging whether the data balance processing result achieves a balance effect or not, if so, outputting the data balance processing result as a quality enhancement result of the traffic accident data, and if not, taking the balance processing result as a filled data set and returning to S5. According to the invention, the loss phenomenon of
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116701853A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116701853A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116701853A3</originalsourceid><addsrcrecordid>eNqNizsOwjAQBd1QIOAOywGQsCI-LYpAVFQp6KKHvSEWjh3sJYjbAxIHoJpiZsbqXCU0jTMEY5zlIGQhoPsD3smLOLQIhruv6FjaaOmCzJZioCsHThA3MMEOnDKSg6fA8ozpNlWjBj7z7MeJmh_2VXlccB9rzj3MZ5e6PGm93iz1dlXsin-aN8x6OsE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Traffic accident data quality enhancement method based on generative adversarial network</title><source>esp@cenet</source><creator>ZHANG SHENGRUI ; ZHANG YING ; ZHOU BEI ; LI JIALU ; YU YANG</creator><creatorcontrib>ZHANG SHENGRUI ; ZHANG YING ; ZHOU BEI ; LI JIALU ; YU YANG</creatorcontrib><description>The invention discloses a traffic accident data quality enhancement method based on a generative adversarial network, and the method comprises the steps: S2, carrying out the preprocessing of a traffic accident data set, and obtaining a preprocessed data set; s3, performing data filling on the preprocessed data set by using a generative interpolation network to obtain a filled data set; s4, judging whether the filled data set meets a preset filling effect or not, and if yes, entering S5; otherwise, returning to S3; s5, performing data balancing processing on data with unbalanced categories in the filled data set to obtain a data set after data balancing processing; and S6, judging whether the data balance processing result achieves a balance effect or not, if so, outputting the data balance processing result as a quality enhancement result of the traffic accident data, and if not, taking the balance processing result as a filled data set and returning to S5. According to the invention, the loss phenomenon of</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SIGNALLING ; TRAFFIC CONTROL SYSTEMS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230905&amp;DB=EPODOC&amp;CC=CN&amp;NR=116701853A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230905&amp;DB=EPODOC&amp;CC=CN&amp;NR=116701853A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG SHENGRUI</creatorcontrib><creatorcontrib>ZHANG YING</creatorcontrib><creatorcontrib>ZHOU BEI</creatorcontrib><creatorcontrib>LI JIALU</creatorcontrib><creatorcontrib>YU YANG</creatorcontrib><title>Traffic accident data quality enhancement method based on generative adversarial network</title><description>The invention discloses a traffic accident data quality enhancement method based on a generative adversarial network, and the method comprises the steps: S2, carrying out the preprocessing of a traffic accident data set, and obtaining a preprocessed data set; s3, performing data filling on the preprocessed data set by using a generative interpolation network to obtain a filled data set; s4, judging whether the filled data set meets a preset filling effect or not, and if yes, entering S5; otherwise, returning to S3; s5, performing data balancing processing on data with unbalanced categories in the filled data set to obtain a data set after data balancing processing; and S6, judging whether the data balance processing result achieves a balance effect or not, if so, outputting the data balance processing result as a quality enhancement result of the traffic accident data, and if not, taking the balance processing result as a filled data set and returning to S5. According to the invention, the loss phenomenon of</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SIGNALLING</subject><subject>TRAFFIC CONTROL SYSTEMS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNizsOwjAQBd1QIOAOywGQsCI-LYpAVFQp6KKHvSEWjh3sJYjbAxIHoJpiZsbqXCU0jTMEY5zlIGQhoPsD3smLOLQIhruv6FjaaOmCzJZioCsHThA3MMEOnDKSg6fA8ozpNlWjBj7z7MeJmh_2VXlccB9rzj3MZ5e6PGm93iz1dlXsin-aN8x6OsE</recordid><startdate>20230905</startdate><enddate>20230905</enddate><creator>ZHANG SHENGRUI</creator><creator>ZHANG YING</creator><creator>ZHOU BEI</creator><creator>LI JIALU</creator><creator>YU YANG</creator><scope>EVB</scope></search><sort><creationdate>20230905</creationdate><title>Traffic accident data quality enhancement method based on generative adversarial network</title><author>ZHANG SHENGRUI ; ZHANG YING ; ZHOU BEI ; LI JIALU ; YU YANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116701853A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SIGNALLING</topic><topic>TRAFFIC CONTROL SYSTEMS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG SHENGRUI</creatorcontrib><creatorcontrib>ZHANG YING</creatorcontrib><creatorcontrib>ZHOU BEI</creatorcontrib><creatorcontrib>LI JIALU</creatorcontrib><creatorcontrib>YU YANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG SHENGRUI</au><au>ZHANG YING</au><au>ZHOU BEI</au><au>LI JIALU</au><au>YU YANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Traffic accident data quality enhancement method based on generative adversarial network</title><date>2023-09-05</date><risdate>2023</risdate><abstract>The invention discloses a traffic accident data quality enhancement method based on a generative adversarial network, and the method comprises the steps: S2, carrying out the preprocessing of a traffic accident data set, and obtaining a preprocessed data set; s3, performing data filling on the preprocessed data set by using a generative interpolation network to obtain a filled data set; s4, judging whether the filled data set meets a preset filling effect or not, and if yes, entering S5; otherwise, returning to S3; s5, performing data balancing processing on data with unbalanced categories in the filled data set to obtain a data set after data balancing processing; and S6, judging whether the data balance processing result achieves a balance effect or not, if so, outputting the data balance processing result as a quality enhancement result of the traffic accident data, and if not, taking the balance processing result as a filled data set and returning to S5. According to the invention, the loss phenomenon of</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116701853A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
SIGNALLING
TRAFFIC CONTROL SYSTEMS
title Traffic accident data quality enhancement method based on generative adversarial network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A11%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20SHENGRUI&rft.date=2023-09-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116701853A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true