Salient target detection method based on attention mechanism and multi-scale feature fusion

The invention discloses a saliency target detection method based on an attention mechanism and multi-scale feature fusion, and the method comprises the steps: S1, carrying out the data preprocessing, and constructing a data set and labels needed by the training and testing of a deep learning model;...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: XU RUNCHU, YANG HUI, LI YANGJUN, XU BANGLIAN, ZHANG YIQIANG, ZHANG LEIHONG, SHEN ZIMIN, LIU KAI, ZHANG DAWEI, FANG SHU, WANG KAIMIN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator XU RUNCHU
YANG HUI
LI YANGJUN
XU BANGLIAN
ZHANG YIQIANG
ZHANG LEIHONG
SHEN ZIMIN
LIU KAI
ZHANG DAWEI
FANG SHU
WANG KAIMIN
description The invention discloses a saliency target detection method based on an attention mechanism and multi-scale feature fusion, and the method comprises the steps: S1, carrying out the data preprocessing, and constructing a data set and labels needed by the training and testing of a deep learning model; s2, constructing a saliency target detection network based on an attention mechanism and multi-scale feature fusion; s3, inputting the training data set in the S1 into the saliency target detection network constructed in the S2 for training to obtain a saliency target detection model; and S4, randomly selecting pictures and inputting the pictures into the model to obtain a detection result. According to the method, the features of the salient region are effectively extracted, and redundant features are effectively filtered. 本发明公开了一种基于注意力机制和多尺度特征融合的显著性目标检测方法,包括:S1、进行数据预处理,构建深度学习模型训练及测试所需的数据集及标签;S2、构建基于注意力机制和多尺度特征融合的显著性目标检测网络;S3、将S1中的训练数据集输入到S2中构建的显著性目标检测网络中进行训练,得到显著性目标检测模型;S4、随机挑选图片输入到该模型中,得到检测结果。根据本发明,有效的提取到显著性区域的特
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116681978A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116681978A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116681978A3</originalsourceid><addsrcrecordid>eNqNyr0KwjAUxfEuDqK-w_UBOgSh1lGK4uSim0O5JqdtIB-luXl_A_oATn8O57euXg92FkFIeBkhZCDQYmMgD5mioTcnGCqbRYr7PnriYJMnDoZ8dmLrpNmBBrDkpTSnArfVamCXsPt1U-2vl2d3qzHHHmlmjQDpu7tSTdOq07E9H_4xH5DFO9E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Salient target detection method based on attention mechanism and multi-scale feature fusion</title><source>esp@cenet</source><creator>XU RUNCHU ; YANG HUI ; LI YANGJUN ; XU BANGLIAN ; ZHANG YIQIANG ; ZHANG LEIHONG ; SHEN ZIMIN ; LIU KAI ; ZHANG DAWEI ; FANG SHU ; WANG KAIMIN</creator><creatorcontrib>XU RUNCHU ; YANG HUI ; LI YANGJUN ; XU BANGLIAN ; ZHANG YIQIANG ; ZHANG LEIHONG ; SHEN ZIMIN ; LIU KAI ; ZHANG DAWEI ; FANG SHU ; WANG KAIMIN</creatorcontrib><description>The invention discloses a saliency target detection method based on an attention mechanism and multi-scale feature fusion, and the method comprises the steps: S1, carrying out the data preprocessing, and constructing a data set and labels needed by the training and testing of a deep learning model; s2, constructing a saliency target detection network based on an attention mechanism and multi-scale feature fusion; s3, inputting the training data set in the S1 into the saliency target detection network constructed in the S2 for training to obtain a saliency target detection model; and S4, randomly selecting pictures and inputting the pictures into the model to obtain a detection result. According to the method, the features of the salient region are effectively extracted, and redundant features are effectively filtered. 本发明公开了一种基于注意力机制和多尺度特征融合的显著性目标检测方法,包括:S1、进行数据预处理,构建深度学习模型训练及测试所需的数据集及标签;S2、构建基于注意力机制和多尺度特征融合的显著性目标检测网络;S3、将S1中的训练数据集输入到S2中构建的显著性目标检测网络中进行训练,得到显著性目标检测模型;S4、随机挑选图片输入到该模型中,得到检测结果。根据本发明,有效的提取到显著性区域的特</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230901&amp;DB=EPODOC&amp;CC=CN&amp;NR=116681978A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230901&amp;DB=EPODOC&amp;CC=CN&amp;NR=116681978A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XU RUNCHU</creatorcontrib><creatorcontrib>YANG HUI</creatorcontrib><creatorcontrib>LI YANGJUN</creatorcontrib><creatorcontrib>XU BANGLIAN</creatorcontrib><creatorcontrib>ZHANG YIQIANG</creatorcontrib><creatorcontrib>ZHANG LEIHONG</creatorcontrib><creatorcontrib>SHEN ZIMIN</creatorcontrib><creatorcontrib>LIU KAI</creatorcontrib><creatorcontrib>ZHANG DAWEI</creatorcontrib><creatorcontrib>FANG SHU</creatorcontrib><creatorcontrib>WANG KAIMIN</creatorcontrib><title>Salient target detection method based on attention mechanism and multi-scale feature fusion</title><description>The invention discloses a saliency target detection method based on an attention mechanism and multi-scale feature fusion, and the method comprises the steps: S1, carrying out the data preprocessing, and constructing a data set and labels needed by the training and testing of a deep learning model; s2, constructing a saliency target detection network based on an attention mechanism and multi-scale feature fusion; s3, inputting the training data set in the S1 into the saliency target detection network constructed in the S2 for training to obtain a saliency target detection model; and S4, randomly selecting pictures and inputting the pictures into the model to obtain a detection result. According to the method, the features of the salient region are effectively extracted, and redundant features are effectively filtered. 本发明公开了一种基于注意力机制和多尺度特征融合的显著性目标检测方法,包括:S1、进行数据预处理,构建深度学习模型训练及测试所需的数据集及标签;S2、构建基于注意力机制和多尺度特征融合的显著性目标检测网络;S3、将S1中的训练数据集输入到S2中构建的显著性目标检测网络中进行训练,得到显著性目标检测模型;S4、随机挑选图片输入到该模型中,得到检测结果。根据本发明,有效的提取到显著性区域的特</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyr0KwjAUxfEuDqK-w_UBOgSh1lGK4uSim0O5JqdtIB-luXl_A_oATn8O57euXg92FkFIeBkhZCDQYmMgD5mioTcnGCqbRYr7PnriYJMnDoZ8dmLrpNmBBrDkpTSnArfVamCXsPt1U-2vl2d3qzHHHmlmjQDpu7tSTdOq07E9H_4xH5DFO9E</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>XU RUNCHU</creator><creator>YANG HUI</creator><creator>LI YANGJUN</creator><creator>XU BANGLIAN</creator><creator>ZHANG YIQIANG</creator><creator>ZHANG LEIHONG</creator><creator>SHEN ZIMIN</creator><creator>LIU KAI</creator><creator>ZHANG DAWEI</creator><creator>FANG SHU</creator><creator>WANG KAIMIN</creator><scope>EVB</scope></search><sort><creationdate>20230901</creationdate><title>Salient target detection method based on attention mechanism and multi-scale feature fusion</title><author>XU RUNCHU ; YANG HUI ; LI YANGJUN ; XU BANGLIAN ; ZHANG YIQIANG ; ZHANG LEIHONG ; SHEN ZIMIN ; LIU KAI ; ZHANG DAWEI ; FANG SHU ; WANG KAIMIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116681978A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>XU RUNCHU</creatorcontrib><creatorcontrib>YANG HUI</creatorcontrib><creatorcontrib>LI YANGJUN</creatorcontrib><creatorcontrib>XU BANGLIAN</creatorcontrib><creatorcontrib>ZHANG YIQIANG</creatorcontrib><creatorcontrib>ZHANG LEIHONG</creatorcontrib><creatorcontrib>SHEN ZIMIN</creatorcontrib><creatorcontrib>LIU KAI</creatorcontrib><creatorcontrib>ZHANG DAWEI</creatorcontrib><creatorcontrib>FANG SHU</creatorcontrib><creatorcontrib>WANG KAIMIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XU RUNCHU</au><au>YANG HUI</au><au>LI YANGJUN</au><au>XU BANGLIAN</au><au>ZHANG YIQIANG</au><au>ZHANG LEIHONG</au><au>SHEN ZIMIN</au><au>LIU KAI</au><au>ZHANG DAWEI</au><au>FANG SHU</au><au>WANG KAIMIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Salient target detection method based on attention mechanism and multi-scale feature fusion</title><date>2023-09-01</date><risdate>2023</risdate><abstract>The invention discloses a saliency target detection method based on an attention mechanism and multi-scale feature fusion, and the method comprises the steps: S1, carrying out the data preprocessing, and constructing a data set and labels needed by the training and testing of a deep learning model; s2, constructing a saliency target detection network based on an attention mechanism and multi-scale feature fusion; s3, inputting the training data set in the S1 into the saliency target detection network constructed in the S2 for training to obtain a saliency target detection model; and S4, randomly selecting pictures and inputting the pictures into the model to obtain a detection result. According to the method, the features of the salient region are effectively extracted, and redundant features are effectively filtered. 本发明公开了一种基于注意力机制和多尺度特征融合的显著性目标检测方法,包括:S1、进行数据预处理,构建深度学习模型训练及测试所需的数据集及标签;S2、构建基于注意力机制和多尺度特征融合的显著性目标检测网络;S3、将S1中的训练数据集输入到S2中构建的显著性目标检测网络中进行训练,得到显著性目标检测模型;S4、随机挑选图片输入到该模型中,得到检测结果。根据本发明,有效的提取到显著性区域的特</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116681978A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Salient target detection method based on attention mechanism and multi-scale feature fusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A06%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XU%20RUNCHU&rft.date=2023-09-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116681978A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true