Application scheduling deployment method based on big data cluster and storage medium

The invention discloses an application scheduling deployment method based on a big data cluster and a storage medium. Double-track system parallel synchronous implementation is adopted, and the queuing theory, the cellular automaton and the DS theory are combined, so that task scheduling and resourc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: YANG MI, LIU JIANXI, LU JING, ZHOU QIANFENG, XIANG SHUAI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator YANG MI
LIU JIANXI
LU JING
ZHOU QIANFENG
XIANG SHUAI
description The invention discloses an application scheduling deployment method based on a big data cluster and a storage medium. Double-track system parallel synchronous implementation is adopted, and the queuing theory, the cellular automaton and the DS theory are combined, so that task scheduling and resource allocation are optimized, and the system performance and the resource utilization rate are improved. By comprehensively considering a plurality of indexes and utilizing an information fusion technology, the method can make a reliable and efficient task scheduling decision in a dynamic environment; firstly, a task scheduling strategy is optimized on the whole and is not limited to a certain specific performance index; in addition, the cellular automaton model is used for simulating the dynamic change of task scheduling, and the actual execution condition of tasks and the dynamic change of cluster resources can be comprehensively considered. And 2, multi-view analysis is provided: information of two views is fused
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116680062A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116680062A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116680062A3</originalsourceid><addsrcrecordid>eNqNyj0OwjAMQOEsDAi4g3sApBakiLWqQExMMFduYtpI-VPtDNyeDByA6Q3v26pXn7N3BsWlCGwWssW7OIOl7NMnUBQIJEuyMCGThaomVzcKgvGFhVbAaIElrThTxdaVsFebN3qmw6871dyuz-F-pJxG4oyGIsk4PLpO60vb6lN__sd8Afj9OUc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Application scheduling deployment method based on big data cluster and storage medium</title><source>esp@cenet</source><creator>YANG MI ; LIU JIANXI ; LU JING ; ZHOU QIANFENG ; XIANG SHUAI</creator><creatorcontrib>YANG MI ; LIU JIANXI ; LU JING ; ZHOU QIANFENG ; XIANG SHUAI</creatorcontrib><description>The invention discloses an application scheduling deployment method based on a big data cluster and a storage medium. Double-track system parallel synchronous implementation is adopted, and the queuing theory, the cellular automaton and the DS theory are combined, so that task scheduling and resource allocation are optimized, and the system performance and the resource utilization rate are improved. By comprehensively considering a plurality of indexes and utilizing an information fusion technology, the method can make a reliable and efficient task scheduling decision in a dynamic environment; firstly, a task scheduling strategy is optimized on the whole and is not limited to a certain specific performance index; in addition, the cellular automaton model is used for simulating the dynamic change of task scheduling, and the actual execution condition of tasks and the dynamic change of cluster resources can be comprehensively considered. And 2, multi-view analysis is provided: information of two views is fused</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230901&amp;DB=EPODOC&amp;CC=CN&amp;NR=116680062A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230901&amp;DB=EPODOC&amp;CC=CN&amp;NR=116680062A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YANG MI</creatorcontrib><creatorcontrib>LIU JIANXI</creatorcontrib><creatorcontrib>LU JING</creatorcontrib><creatorcontrib>ZHOU QIANFENG</creatorcontrib><creatorcontrib>XIANG SHUAI</creatorcontrib><title>Application scheduling deployment method based on big data cluster and storage medium</title><description>The invention discloses an application scheduling deployment method based on a big data cluster and a storage medium. Double-track system parallel synchronous implementation is adopted, and the queuing theory, the cellular automaton and the DS theory are combined, so that task scheduling and resource allocation are optimized, and the system performance and the resource utilization rate are improved. By comprehensively considering a plurality of indexes and utilizing an information fusion technology, the method can make a reliable and efficient task scheduling decision in a dynamic environment; firstly, a task scheduling strategy is optimized on the whole and is not limited to a certain specific performance index; in addition, the cellular automaton model is used for simulating the dynamic change of task scheduling, and the actual execution condition of tasks and the dynamic change of cluster resources can be comprehensively considered. And 2, multi-view analysis is provided: information of two views is fused</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyj0OwjAMQOEsDAi4g3sApBakiLWqQExMMFduYtpI-VPtDNyeDByA6Q3v26pXn7N3BsWlCGwWssW7OIOl7NMnUBQIJEuyMCGThaomVzcKgvGFhVbAaIElrThTxdaVsFebN3qmw6871dyuz-F-pJxG4oyGIsk4PLpO60vb6lN__sd8Afj9OUc</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>YANG MI</creator><creator>LIU JIANXI</creator><creator>LU JING</creator><creator>ZHOU QIANFENG</creator><creator>XIANG SHUAI</creator><scope>EVB</scope></search><sort><creationdate>20230901</creationdate><title>Application scheduling deployment method based on big data cluster and storage medium</title><author>YANG MI ; LIU JIANXI ; LU JING ; ZHOU QIANFENG ; XIANG SHUAI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116680062A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>YANG MI</creatorcontrib><creatorcontrib>LIU JIANXI</creatorcontrib><creatorcontrib>LU JING</creatorcontrib><creatorcontrib>ZHOU QIANFENG</creatorcontrib><creatorcontrib>XIANG SHUAI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YANG MI</au><au>LIU JIANXI</au><au>LU JING</au><au>ZHOU QIANFENG</au><au>XIANG SHUAI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Application scheduling deployment method based on big data cluster and storage medium</title><date>2023-09-01</date><risdate>2023</risdate><abstract>The invention discloses an application scheduling deployment method based on a big data cluster and a storage medium. Double-track system parallel synchronous implementation is adopted, and the queuing theory, the cellular automaton and the DS theory are combined, so that task scheduling and resource allocation are optimized, and the system performance and the resource utilization rate are improved. By comprehensively considering a plurality of indexes and utilizing an information fusion technology, the method can make a reliable and efficient task scheduling decision in a dynamic environment; firstly, a task scheduling strategy is optimized on the whole and is not limited to a certain specific performance index; in addition, the cellular automaton model is used for simulating the dynamic change of task scheduling, and the actual execution condition of tasks and the dynamic change of cluster resources can be comprehensively considered. And 2, multi-view analysis is provided: information of two views is fused</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116680062A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Application scheduling deployment method based on big data cluster and storage medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A16%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YANG%20MI&rft.date=2023-09-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116680062A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true