Satellite dynamic spectrum access prediction method and device considering incomplete spectrum sensing mode

The invention discloses a satellite dynamic spectrum access prediction method and device considering an incomplete spectrum sensing mode, and the method comprises the steps: constructing a deep reinforcement learning frame based on an underlying satellite communication system, enabling the deep rein...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: YU BOREN, NI ZURONG, CHO HOUL
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator YU BOREN
NI ZURONG
CHO HOUL
description The invention discloses a satellite dynamic spectrum access prediction method and device considering an incomplete spectrum sensing mode, and the method comprises the steps: constructing a deep reinforcement learning frame based on an underlying satellite communication system, enabling the deep reinforcement learning frame to comprise a training network, a target network, an agent, an experience pool and an environment, enabling a secondary satellite to serve as the agent, and enabling the target network to serve as a target network; a transmission channel is used as an environment; establishing a target optimization problem according to the deep reinforcement learning framework, defining parameters in the deep reinforcement learning framework, and converting the target optimization problem into a sequential decision problem; performing reinforcement learning training by using the experience pool based on the sequential decision problem to obtain a trained training network; and obtaining an observation value
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116669198A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116669198A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116669198A3</originalsourceid><addsrcrecordid>eNqNjLEKwkAQBdNYiPoP6wdYBCGYUoJiZaN9OPaeuuRu78iegn9vCrG2mmKGmVfDxRWEIAXk3-qiMFkGl_EZyTHDjPIIL1wkKUWUR_Lk1JPHSxjESU08RtE7iXKKOWB6_R6GyU8uJo9lNbu5YFh9uajWx8O1O22QUw_LjqEofXeu66Zp2rrd7bf_NB9o8kKK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Satellite dynamic spectrum access prediction method and device considering incomplete spectrum sensing mode</title><source>esp@cenet</source><creator>YU BOREN ; NI ZURONG ; CHO HOUL</creator><creatorcontrib>YU BOREN ; NI ZURONG ; CHO HOUL</creatorcontrib><description>The invention discloses a satellite dynamic spectrum access prediction method and device considering an incomplete spectrum sensing mode, and the method comprises the steps: constructing a deep reinforcement learning frame based on an underlying satellite communication system, enabling the deep reinforcement learning frame to comprise a training network, a target network, an agent, an experience pool and an environment, enabling a secondary satellite to serve as the agent, and enabling the target network to serve as a target network; a transmission channel is used as an environment; establishing a target optimization problem according to the deep reinforcement learning framework, defining parameters in the deep reinforcement learning framework, and converting the target optimization problem into a sequential decision problem; performing reinforcement learning training by using the experience pool based on the sequential decision problem to obtain a trained training network; and obtaining an observation value</description><language>chi ; eng</language><subject>ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; WIRELESS COMMUNICATIONS NETWORKS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230829&amp;DB=EPODOC&amp;CC=CN&amp;NR=116669198A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230829&amp;DB=EPODOC&amp;CC=CN&amp;NR=116669198A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YU BOREN</creatorcontrib><creatorcontrib>NI ZURONG</creatorcontrib><creatorcontrib>CHO HOUL</creatorcontrib><title>Satellite dynamic spectrum access prediction method and device considering incomplete spectrum sensing mode</title><description>The invention discloses a satellite dynamic spectrum access prediction method and device considering an incomplete spectrum sensing mode, and the method comprises the steps: constructing a deep reinforcement learning frame based on an underlying satellite communication system, enabling the deep reinforcement learning frame to comprise a training network, a target network, an agent, an experience pool and an environment, enabling a secondary satellite to serve as the agent, and enabling the target network to serve as a target network; a transmission channel is used as an environment; establishing a target optimization problem according to the deep reinforcement learning framework, defining parameters in the deep reinforcement learning framework, and converting the target optimization problem into a sequential decision problem; performing reinforcement learning training by using the experience pool based on the sequential decision problem to obtain a trained training network; and obtaining an observation value</description><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>WIRELESS COMMUNICATIONS NETWORKS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjLEKwkAQBdNYiPoP6wdYBCGYUoJiZaN9OPaeuuRu78iegn9vCrG2mmKGmVfDxRWEIAXk3-qiMFkGl_EZyTHDjPIIL1wkKUWUR_Lk1JPHSxjESU08RtE7iXKKOWB6_R6GyU8uJo9lNbu5YFh9uajWx8O1O22QUw_LjqEofXeu66Zp2rrd7bf_NB9o8kKK</recordid><startdate>20230829</startdate><enddate>20230829</enddate><creator>YU BOREN</creator><creator>NI ZURONG</creator><creator>CHO HOUL</creator><scope>EVB</scope></search><sort><creationdate>20230829</creationdate><title>Satellite dynamic spectrum access prediction method and device considering incomplete spectrum sensing mode</title><author>YU BOREN ; NI ZURONG ; CHO HOUL</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116669198A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>WIRELESS COMMUNICATIONS NETWORKS</topic><toplevel>online_resources</toplevel><creatorcontrib>YU BOREN</creatorcontrib><creatorcontrib>NI ZURONG</creatorcontrib><creatorcontrib>CHO HOUL</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YU BOREN</au><au>NI ZURONG</au><au>CHO HOUL</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Satellite dynamic spectrum access prediction method and device considering incomplete spectrum sensing mode</title><date>2023-08-29</date><risdate>2023</risdate><abstract>The invention discloses a satellite dynamic spectrum access prediction method and device considering an incomplete spectrum sensing mode, and the method comprises the steps: constructing a deep reinforcement learning frame based on an underlying satellite communication system, enabling the deep reinforcement learning frame to comprise a training network, a target network, an agent, an experience pool and an environment, enabling a secondary satellite to serve as the agent, and enabling the target network to serve as a target network; a transmission channel is used as an environment; establishing a target optimization problem according to the deep reinforcement learning framework, defining parameters in the deep reinforcement learning framework, and converting the target optimization problem into a sequential decision problem; performing reinforcement learning training by using the experience pool based on the sequential decision problem to obtain a trained training network; and obtaining an observation value</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116669198A
source esp@cenet
subjects ELECTRIC COMMUNICATION TECHNIQUE
ELECTRICITY
WIRELESS COMMUNICATIONS NETWORKS
title Satellite dynamic spectrum access prediction method and device considering incomplete spectrum sensing mode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T20%3A50%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YU%20BOREN&rft.date=2023-08-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116669198A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true