Mine augmented reality unmanned mining working face depth estimation method
The invention discloses a mine augmented reality unmanned mining working face depth estimation method, which belongs to the technical field of image processing, and comprises the following steps: constructing a depth encoder consisting of a convolutional layer, a pooling layer, a residual error laye...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | KOU QIQI JI GUANGKAI ZHAO LIN'AO CHEN JUNHUI WANG ZIQIANG CHENG ZHIWEI FAN SHUMING XU SHUAI WANG YIH KOU HANBO LI LONG MA XIANG ZHANG HUAQIANG CHENG DEQIANG |
description | The invention discloses a mine augmented reality unmanned mining working face depth estimation method, which belongs to the technical field of image processing, and comprises the following steps: constructing a depth encoder consisting of a convolutional layer, a pooling layer, a residual error layer and a down-sampling module, extracting image shallow high-resolution feature information in an encoder network shallow layer, and obtaining an image shallow high-resolution feature information; in the deep layer of the encoder network, through stacking of convolution operation, image low-resolution feature information is extracted, and a shallow-layer high-resolution feature map is fused into a deep-layer low-resolution feature map through a hierarchical feature adjustment module; constructing a depth decoder network composed of a deconvolution layer, an up-sampling module and jump connection, and estimating the depth of the image; constructing a camera pose prediction network, and reprojecting luminosity loss to |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116664649A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116664649A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116664649A3</originalsourceid><addsrcrecordid>eNrjZPD2zcxLVUgsTc9NzStJTVEoSk3MySypVCjNy03MywMK5GbmZealK5TnF2WD6LTE5FSFlNSCkgyF1OKSzNzEksz8PIXc1JKM_BQeBta0xJziVF4ozc2g6OYa4uyhm1qQH59aXADUmpdaEu_sZ2hoZmZmYmZi6WhMjBoAiX014A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Mine augmented reality unmanned mining working face depth estimation method</title><source>esp@cenet</source><creator>KOU QIQI ; JI GUANGKAI ; ZHAO LIN'AO ; CHEN JUNHUI ; WANG ZIQIANG ; CHENG ZHIWEI ; FAN SHUMING ; XU SHUAI ; WANG YIH ; KOU HANBO ; LI LONG ; MA XIANG ; ZHANG HUAQIANG ; CHENG DEQIANG</creator><creatorcontrib>KOU QIQI ; JI GUANGKAI ; ZHAO LIN'AO ; CHEN JUNHUI ; WANG ZIQIANG ; CHENG ZHIWEI ; FAN SHUMING ; XU SHUAI ; WANG YIH ; KOU HANBO ; LI LONG ; MA XIANG ; ZHANG HUAQIANG ; CHENG DEQIANG</creatorcontrib><description>The invention discloses a mine augmented reality unmanned mining working face depth estimation method, which belongs to the technical field of image processing, and comprises the following steps: constructing a depth encoder consisting of a convolutional layer, a pooling layer, a residual error layer and a down-sampling module, extracting image shallow high-resolution feature information in an encoder network shallow layer, and obtaining an image shallow high-resolution feature information; in the deep layer of the encoder network, through stacking of convolution operation, image low-resolution feature information is extracted, and a shallow-layer high-resolution feature map is fused into a deep-layer low-resolution feature map through a hierarchical feature adjustment module; constructing a depth decoder network composed of a deconvolution layer, an up-sampling module and jump connection, and estimating the depth of the image; constructing a camera pose prediction network, and reprojecting luminosity loss to</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230829&DB=EPODOC&CC=CN&NR=116664649A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230829&DB=EPODOC&CC=CN&NR=116664649A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>KOU QIQI</creatorcontrib><creatorcontrib>JI GUANGKAI</creatorcontrib><creatorcontrib>ZHAO LIN'AO</creatorcontrib><creatorcontrib>CHEN JUNHUI</creatorcontrib><creatorcontrib>WANG ZIQIANG</creatorcontrib><creatorcontrib>CHENG ZHIWEI</creatorcontrib><creatorcontrib>FAN SHUMING</creatorcontrib><creatorcontrib>XU SHUAI</creatorcontrib><creatorcontrib>WANG YIH</creatorcontrib><creatorcontrib>KOU HANBO</creatorcontrib><creatorcontrib>LI LONG</creatorcontrib><creatorcontrib>MA XIANG</creatorcontrib><creatorcontrib>ZHANG HUAQIANG</creatorcontrib><creatorcontrib>CHENG DEQIANG</creatorcontrib><title>Mine augmented reality unmanned mining working face depth estimation method</title><description>The invention discloses a mine augmented reality unmanned mining working face depth estimation method, which belongs to the technical field of image processing, and comprises the following steps: constructing a depth encoder consisting of a convolutional layer, a pooling layer, a residual error layer and a down-sampling module, extracting image shallow high-resolution feature information in an encoder network shallow layer, and obtaining an image shallow high-resolution feature information; in the deep layer of the encoder network, through stacking of convolution operation, image low-resolution feature information is extracted, and a shallow-layer high-resolution feature map is fused into a deep-layer low-resolution feature map through a hierarchical feature adjustment module; constructing a depth decoder network composed of a deconvolution layer, an up-sampling module and jump connection, and estimating the depth of the image; constructing a camera pose prediction network, and reprojecting luminosity loss to</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPD2zcxLVUgsTc9NzStJTVEoSk3MySypVCjNy03MywMK5GbmZealK5TnF2WD6LTE5FSFlNSCkgyF1OKSzNzEksz8PIXc1JKM_BQeBta0xJziVF4ozc2g6OYa4uyhm1qQH59aXADUmpdaEu_sZ2hoZmZmYmZi6WhMjBoAiX014A</recordid><startdate>20230829</startdate><enddate>20230829</enddate><creator>KOU QIQI</creator><creator>JI GUANGKAI</creator><creator>ZHAO LIN'AO</creator><creator>CHEN JUNHUI</creator><creator>WANG ZIQIANG</creator><creator>CHENG ZHIWEI</creator><creator>FAN SHUMING</creator><creator>XU SHUAI</creator><creator>WANG YIH</creator><creator>KOU HANBO</creator><creator>LI LONG</creator><creator>MA XIANG</creator><creator>ZHANG HUAQIANG</creator><creator>CHENG DEQIANG</creator><scope>EVB</scope></search><sort><creationdate>20230829</creationdate><title>Mine augmented reality unmanned mining working face depth estimation method</title><author>KOU QIQI ; JI GUANGKAI ; ZHAO LIN'AO ; CHEN JUNHUI ; WANG ZIQIANG ; CHENG ZHIWEI ; FAN SHUMING ; XU SHUAI ; WANG YIH ; KOU HANBO ; LI LONG ; MA XIANG ; ZHANG HUAQIANG ; CHENG DEQIANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116664649A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>KOU QIQI</creatorcontrib><creatorcontrib>JI GUANGKAI</creatorcontrib><creatorcontrib>ZHAO LIN'AO</creatorcontrib><creatorcontrib>CHEN JUNHUI</creatorcontrib><creatorcontrib>WANG ZIQIANG</creatorcontrib><creatorcontrib>CHENG ZHIWEI</creatorcontrib><creatorcontrib>FAN SHUMING</creatorcontrib><creatorcontrib>XU SHUAI</creatorcontrib><creatorcontrib>WANG YIH</creatorcontrib><creatorcontrib>KOU HANBO</creatorcontrib><creatorcontrib>LI LONG</creatorcontrib><creatorcontrib>MA XIANG</creatorcontrib><creatorcontrib>ZHANG HUAQIANG</creatorcontrib><creatorcontrib>CHENG DEQIANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>KOU QIQI</au><au>JI GUANGKAI</au><au>ZHAO LIN'AO</au><au>CHEN JUNHUI</au><au>WANG ZIQIANG</au><au>CHENG ZHIWEI</au><au>FAN SHUMING</au><au>XU SHUAI</au><au>WANG YIH</au><au>KOU HANBO</au><au>LI LONG</au><au>MA XIANG</au><au>ZHANG HUAQIANG</au><au>CHENG DEQIANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Mine augmented reality unmanned mining working face depth estimation method</title><date>2023-08-29</date><risdate>2023</risdate><abstract>The invention discloses a mine augmented reality unmanned mining working face depth estimation method, which belongs to the technical field of image processing, and comprises the following steps: constructing a depth encoder consisting of a convolutional layer, a pooling layer, a residual error layer and a down-sampling module, extracting image shallow high-resolution feature information in an encoder network shallow layer, and obtaining an image shallow high-resolution feature information; in the deep layer of the encoder network, through stacking of convolution operation, image low-resolution feature information is extracted, and a shallow-layer high-resolution feature map is fused into a deep-layer low-resolution feature map through a hierarchical feature adjustment module; constructing a depth decoder network composed of a deconvolution layer, an up-sampling module and jump connection, and estimating the depth of the image; constructing a camera pose prediction network, and reprojecting luminosity loss to</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN116664649A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
title | Mine augmented reality unmanned mining working face depth estimation method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T23%3A22%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=KOU%20QIQI&rft.date=2023-08-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116664649A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |