Mine augmented reality unmanned mining working face depth estimation method

The invention discloses a mine augmented reality unmanned mining working face depth estimation method, which belongs to the technical field of image processing, and comprises the following steps: constructing a depth encoder consisting of a convolutional layer, a pooling layer, a residual error laye...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: KOU QIQI, JI GUANGKAI, ZHAO LIN'AO, CHEN JUNHUI, WANG ZIQIANG, CHENG ZHIWEI, FAN SHUMING, XU SHUAI, WANG YIH, KOU HANBO, LI LONG, MA XIANG, ZHANG HUAQIANG, CHENG DEQIANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator KOU QIQI
JI GUANGKAI
ZHAO LIN'AO
CHEN JUNHUI
WANG ZIQIANG
CHENG ZHIWEI
FAN SHUMING
XU SHUAI
WANG YIH
KOU HANBO
LI LONG
MA XIANG
ZHANG HUAQIANG
CHENG DEQIANG
description The invention discloses a mine augmented reality unmanned mining working face depth estimation method, which belongs to the technical field of image processing, and comprises the following steps: constructing a depth encoder consisting of a convolutional layer, a pooling layer, a residual error layer and a down-sampling module, extracting image shallow high-resolution feature information in an encoder network shallow layer, and obtaining an image shallow high-resolution feature information; in the deep layer of the encoder network, through stacking of convolution operation, image low-resolution feature information is extracted, and a shallow-layer high-resolution feature map is fused into a deep-layer low-resolution feature map through a hierarchical feature adjustment module; constructing a depth decoder network composed of a deconvolution layer, an up-sampling module and jump connection, and estimating the depth of the image; constructing a camera pose prediction network, and reprojecting luminosity loss to
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116664649A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116664649A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116664649A3</originalsourceid><addsrcrecordid>eNrjZPD2zcxLVUgsTc9NzStJTVEoSk3MySypVCjNy03MywMK5GbmZealK5TnF2WD6LTE5FSFlNSCkgyF1OKSzNzEksz8PIXc1JKM_BQeBta0xJziVF4ozc2g6OYa4uyhm1qQH59aXADUmpdaEu_sZ2hoZmZmYmZi6WhMjBoAiX014A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Mine augmented reality unmanned mining working face depth estimation method</title><source>esp@cenet</source><creator>KOU QIQI ; JI GUANGKAI ; ZHAO LIN'AO ; CHEN JUNHUI ; WANG ZIQIANG ; CHENG ZHIWEI ; FAN SHUMING ; XU SHUAI ; WANG YIH ; KOU HANBO ; LI LONG ; MA XIANG ; ZHANG HUAQIANG ; CHENG DEQIANG</creator><creatorcontrib>KOU QIQI ; JI GUANGKAI ; ZHAO LIN'AO ; CHEN JUNHUI ; WANG ZIQIANG ; CHENG ZHIWEI ; FAN SHUMING ; XU SHUAI ; WANG YIH ; KOU HANBO ; LI LONG ; MA XIANG ; ZHANG HUAQIANG ; CHENG DEQIANG</creatorcontrib><description>The invention discloses a mine augmented reality unmanned mining working face depth estimation method, which belongs to the technical field of image processing, and comprises the following steps: constructing a depth encoder consisting of a convolutional layer, a pooling layer, a residual error layer and a down-sampling module, extracting image shallow high-resolution feature information in an encoder network shallow layer, and obtaining an image shallow high-resolution feature information; in the deep layer of the encoder network, through stacking of convolution operation, image low-resolution feature information is extracted, and a shallow-layer high-resolution feature map is fused into a deep-layer low-resolution feature map through a hierarchical feature adjustment module; constructing a depth decoder network composed of a deconvolution layer, an up-sampling module and jump connection, and estimating the depth of the image; constructing a camera pose prediction network, and reprojecting luminosity loss to</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230829&amp;DB=EPODOC&amp;CC=CN&amp;NR=116664649A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230829&amp;DB=EPODOC&amp;CC=CN&amp;NR=116664649A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>KOU QIQI</creatorcontrib><creatorcontrib>JI GUANGKAI</creatorcontrib><creatorcontrib>ZHAO LIN'AO</creatorcontrib><creatorcontrib>CHEN JUNHUI</creatorcontrib><creatorcontrib>WANG ZIQIANG</creatorcontrib><creatorcontrib>CHENG ZHIWEI</creatorcontrib><creatorcontrib>FAN SHUMING</creatorcontrib><creatorcontrib>XU SHUAI</creatorcontrib><creatorcontrib>WANG YIH</creatorcontrib><creatorcontrib>KOU HANBO</creatorcontrib><creatorcontrib>LI LONG</creatorcontrib><creatorcontrib>MA XIANG</creatorcontrib><creatorcontrib>ZHANG HUAQIANG</creatorcontrib><creatorcontrib>CHENG DEQIANG</creatorcontrib><title>Mine augmented reality unmanned mining working face depth estimation method</title><description>The invention discloses a mine augmented reality unmanned mining working face depth estimation method, which belongs to the technical field of image processing, and comprises the following steps: constructing a depth encoder consisting of a convolutional layer, a pooling layer, a residual error layer and a down-sampling module, extracting image shallow high-resolution feature information in an encoder network shallow layer, and obtaining an image shallow high-resolution feature information; in the deep layer of the encoder network, through stacking of convolution operation, image low-resolution feature information is extracted, and a shallow-layer high-resolution feature map is fused into a deep-layer low-resolution feature map through a hierarchical feature adjustment module; constructing a depth decoder network composed of a deconvolution layer, an up-sampling module and jump connection, and estimating the depth of the image; constructing a camera pose prediction network, and reprojecting luminosity loss to</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPD2zcxLVUgsTc9NzStJTVEoSk3MySypVCjNy03MywMK5GbmZealK5TnF2WD6LTE5FSFlNSCkgyF1OKSzNzEksz8PIXc1JKM_BQeBta0xJziVF4ozc2g6OYa4uyhm1qQH59aXADUmpdaEu_sZ2hoZmZmYmZi6WhMjBoAiX014A</recordid><startdate>20230829</startdate><enddate>20230829</enddate><creator>KOU QIQI</creator><creator>JI GUANGKAI</creator><creator>ZHAO LIN'AO</creator><creator>CHEN JUNHUI</creator><creator>WANG ZIQIANG</creator><creator>CHENG ZHIWEI</creator><creator>FAN SHUMING</creator><creator>XU SHUAI</creator><creator>WANG YIH</creator><creator>KOU HANBO</creator><creator>LI LONG</creator><creator>MA XIANG</creator><creator>ZHANG HUAQIANG</creator><creator>CHENG DEQIANG</creator><scope>EVB</scope></search><sort><creationdate>20230829</creationdate><title>Mine augmented reality unmanned mining working face depth estimation method</title><author>KOU QIQI ; JI GUANGKAI ; ZHAO LIN'AO ; CHEN JUNHUI ; WANG ZIQIANG ; CHENG ZHIWEI ; FAN SHUMING ; XU SHUAI ; WANG YIH ; KOU HANBO ; LI LONG ; MA XIANG ; ZHANG HUAQIANG ; CHENG DEQIANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116664649A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>KOU QIQI</creatorcontrib><creatorcontrib>JI GUANGKAI</creatorcontrib><creatorcontrib>ZHAO LIN'AO</creatorcontrib><creatorcontrib>CHEN JUNHUI</creatorcontrib><creatorcontrib>WANG ZIQIANG</creatorcontrib><creatorcontrib>CHENG ZHIWEI</creatorcontrib><creatorcontrib>FAN SHUMING</creatorcontrib><creatorcontrib>XU SHUAI</creatorcontrib><creatorcontrib>WANG YIH</creatorcontrib><creatorcontrib>KOU HANBO</creatorcontrib><creatorcontrib>LI LONG</creatorcontrib><creatorcontrib>MA XIANG</creatorcontrib><creatorcontrib>ZHANG HUAQIANG</creatorcontrib><creatorcontrib>CHENG DEQIANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>KOU QIQI</au><au>JI GUANGKAI</au><au>ZHAO LIN'AO</au><au>CHEN JUNHUI</au><au>WANG ZIQIANG</au><au>CHENG ZHIWEI</au><au>FAN SHUMING</au><au>XU SHUAI</au><au>WANG YIH</au><au>KOU HANBO</au><au>LI LONG</au><au>MA XIANG</au><au>ZHANG HUAQIANG</au><au>CHENG DEQIANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Mine augmented reality unmanned mining working face depth estimation method</title><date>2023-08-29</date><risdate>2023</risdate><abstract>The invention discloses a mine augmented reality unmanned mining working face depth estimation method, which belongs to the technical field of image processing, and comprises the following steps: constructing a depth encoder consisting of a convolutional layer, a pooling layer, a residual error layer and a down-sampling module, extracting image shallow high-resolution feature information in an encoder network shallow layer, and obtaining an image shallow high-resolution feature information; in the deep layer of the encoder network, through stacking of convolution operation, image low-resolution feature information is extracted, and a shallow-layer high-resolution feature map is fused into a deep-layer low-resolution feature map through a hierarchical feature adjustment module; constructing a depth decoder network composed of a deconvolution layer, an up-sampling module and jump connection, and estimating the depth of the image; constructing a camera pose prediction network, and reprojecting luminosity loss to</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116664649A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Mine augmented reality unmanned mining working face depth estimation method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T23%3A22%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=KOU%20QIQI&rft.date=2023-08-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116664649A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true