Feature selection-based food dopant weight visual analysis method
A food dopant visual analysis method based on feature selection comprises the following steps: firstly, cleaning and preprocessing food inspection data, constructing a sample-dopant data set, then taking the processed data as the input of a model in feature selection, calculating the weight value of...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | SHENG YICHEN TANG YING |
description | A food dopant visual analysis method based on feature selection comprises the following steps: firstly, cleaning and preprocessing food inspection data, constructing a sample-dopant data set, then taking the processed data as the input of a model in feature selection, calculating the weight value of a dopant, and calculating the weight value of the dopant; then storing information such as a sample classification result, an evaluation index and a model structure in a learning process; and calculating a correlation measure between the features. Further designing a data visualization view to display the data; and finally, linkage interaction among multiple views is carried out to support a user to obtain an optimal feature combination according to information iterative analysis. The method is simple in operation and friendly in interface, and a user can obtain insights of weights of unqualified samples and dopants thereof in food inspection through the system without more domain knowledge.
基于特征选择的食品掺杂物可视分析方法,首先对 |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116663972A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116663972A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116663972A3</originalsourceid><addsrcrecordid>eNqNyjEOgkAQBVAaC6PeYTwABZKssSREYmVlT0b2I5ssOxtn0Hh7Gw9g9Zq3LpoObMsTpIgYLEgq76zwNIp48pI5Gb0RHpPRK-jCkThx_GhQmmGT-G2xGjkqdj83xb4739pLiSw9NPOABOvba1U55-rT8dDU_5wvJZkyBw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Feature selection-based food dopant weight visual analysis method</title><source>esp@cenet</source><creator>SHENG YICHEN ; TANG YING</creator><creatorcontrib>SHENG YICHEN ; TANG YING</creatorcontrib><description>A food dopant visual analysis method based on feature selection comprises the following steps: firstly, cleaning and preprocessing food inspection data, constructing a sample-dopant data set, then taking the processed data as the input of a model in feature selection, calculating the weight value of a dopant, and calculating the weight value of the dopant; then storing information such as a sample classification result, an evaluation index and a model structure in a learning process; and calculating a correlation measure between the features. Further designing a data visualization view to display the data; and finally, linkage interaction among multiple views is carried out to support a user to obtain an optimal feature combination according to information iterative analysis. The method is simple in operation and friendly in interface, and a user can obtain insights of weights of unqualified samples and dopants thereof in food inspection through the system without more domain knowledge.
基于特征选择的食品掺杂物可视分析方法,首先对</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230829&DB=EPODOC&CC=CN&NR=116663972A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230829&DB=EPODOC&CC=CN&NR=116663972A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SHENG YICHEN</creatorcontrib><creatorcontrib>TANG YING</creatorcontrib><title>Feature selection-based food dopant weight visual analysis method</title><description>A food dopant visual analysis method based on feature selection comprises the following steps: firstly, cleaning and preprocessing food inspection data, constructing a sample-dopant data set, then taking the processed data as the input of a model in feature selection, calculating the weight value of a dopant, and calculating the weight value of the dopant; then storing information such as a sample classification result, an evaluation index and a model structure in a learning process; and calculating a correlation measure between the features. Further designing a data visualization view to display the data; and finally, linkage interaction among multiple views is carried out to support a user to obtain an optimal feature combination according to information iterative analysis. The method is simple in operation and friendly in interface, and a user can obtain insights of weights of unqualified samples and dopants thereof in food inspection through the system without more domain knowledge.
基于特征选择的食品掺杂物可视分析方法,首先对</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEOgkAQBVAaC6PeYTwABZKssSREYmVlT0b2I5ssOxtn0Hh7Gw9g9Zq3LpoObMsTpIgYLEgq76zwNIp48pI5Gb0RHpPRK-jCkThx_GhQmmGT-G2xGjkqdj83xb4739pLiSw9NPOABOvba1U55-rT8dDU_5wvJZkyBw</recordid><startdate>20230829</startdate><enddate>20230829</enddate><creator>SHENG YICHEN</creator><creator>TANG YING</creator><scope>EVB</scope></search><sort><creationdate>20230829</creationdate><title>Feature selection-based food dopant weight visual analysis method</title><author>SHENG YICHEN ; TANG YING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116663972A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>SHENG YICHEN</creatorcontrib><creatorcontrib>TANG YING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SHENG YICHEN</au><au>TANG YING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Feature selection-based food dopant weight visual analysis method</title><date>2023-08-29</date><risdate>2023</risdate><abstract>A food dopant visual analysis method based on feature selection comprises the following steps: firstly, cleaning and preprocessing food inspection data, constructing a sample-dopant data set, then taking the processed data as the input of a model in feature selection, calculating the weight value of a dopant, and calculating the weight value of the dopant; then storing information such as a sample classification result, an evaluation index and a model structure in a learning process; and calculating a correlation measure between the features. Further designing a data visualization view to display the data; and finally, linkage interaction among multiple views is carried out to support a user to obtain an optimal feature combination according to information iterative analysis. The method is simple in operation and friendly in interface, and a user can obtain insights of weights of unqualified samples and dopants thereof in food inspection through the system without more domain knowledge.
基于特征选择的食品掺杂物可视分析方法,首先对</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN116663972A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ELECTRIC DIGITAL DATA PROCESSING PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | Feature selection-based food dopant weight visual analysis method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T09%3A00%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SHENG%20YICHEN&rft.date=2023-08-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116663972A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |