Morphological detection method for superficial aneurysm and wearable equipment

The invention provides a form detection method for superficial aneurysm and wearable equipment. The method comprises the following steps: step 1, constructing and training a diameter-neck ratio prediction neural network model; 2, synchronous ECG signals and PPG signals of a testee are obtained, feat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHANG JINLONG, GAO LIYU, HUANG XINXIN, LIU ZEHUA, LIU KANG, CHAI RUOYU, LIU YANG, HOU XUEYAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHANG JINLONG
GAO LIYU
HUANG XINXIN
LIU ZEHUA
LIU KANG
CHAI RUOYU
LIU YANG
HOU XUEYAN
description The invention provides a form detection method for superficial aneurysm and wearable equipment. The method comprises the following steps: step 1, constructing and training a diameter-neck ratio prediction neural network model; 2, synchronous ECG signals and PPG signals of a testee are obtained, feature parameters are extracted according to the ECG signals and the PPG signals, and the feature parameters comprise the maximum blood flow velocity, the blood flow velocity variation, the blood flow and the blood pressure; and step 3, generating a feature vector of the testee according to the extracted feature parameters, and inputting the feature vector into the trained diameter-neck ratio prediction neural network model to obtain the diameter-neck ratio of the testee. 本发明提供一种面向浅表层动脉瘤的形态检测方法和可穿戴式设备。该方法包括:步骤1:构建并训练径颈比预测神经网络模型;步骤2:获取受测者同步的ECG信号与PPG信号,根据所述ECG信号与PPG信号提取特征参数,所述特征参数包括最大血流速度、血流速度变化量、血液流量和血压;步骤3:根据提取到的特征参数生成受测者的特征向量,将所述特征向量输入至训练好的径颈比预测神经网络模型,得到受测者的径颈比。
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116649937A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116649937A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116649937A3</originalsourceid><addsrcrecordid>eNqNyr0KwjAUhuEsDqLeQ7wAh1KpdCxFcbGTezkmX20gyYn5Qbx7O3gBTu87PGsx3DiGmS0_jSIrNTJUNuylQ55Zy4mjTCUgTkaZBZBHiZ_kltHyDYr0sJB4FRMcfN6K1UQ2YffrRuwv53t_PSDwiBRIwSOP_VBVTXNs2_rU1f-YL4mHN4E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Morphological detection method for superficial aneurysm and wearable equipment</title><source>esp@cenet</source><creator>ZHANG JINLONG ; GAO LIYU ; HUANG XINXIN ; LIU ZEHUA ; LIU KANG ; CHAI RUOYU ; LIU YANG ; HOU XUEYAN</creator><creatorcontrib>ZHANG JINLONG ; GAO LIYU ; HUANG XINXIN ; LIU ZEHUA ; LIU KANG ; CHAI RUOYU ; LIU YANG ; HOU XUEYAN</creatorcontrib><description>The invention provides a form detection method for superficial aneurysm and wearable equipment. The method comprises the following steps: step 1, constructing and training a diameter-neck ratio prediction neural network model; 2, synchronous ECG signals and PPG signals of a testee are obtained, feature parameters are extracted according to the ECG signals and the PPG signals, and the feature parameters comprise the maximum blood flow velocity, the blood flow velocity variation, the blood flow and the blood pressure; and step 3, generating a feature vector of the testee according to the extracted feature parameters, and inputting the feature vector into the trained diameter-neck ratio prediction neural network model to obtain the diameter-neck ratio of the testee. 本发明提供一种面向浅表层动脉瘤的形态检测方法和可穿戴式设备。该方法包括:步骤1:构建并训练径颈比预测神经网络模型;步骤2:获取受测者同步的ECG信号与PPG信号,根据所述ECG信号与PPG信号提取特征参数,所述特征参数包括最大血流速度、血流速度变化量、血液流量和血压;步骤3:根据提取到的特征参数生成受测者的特征向量,将所述特征向量输入至训练好的径颈比预测神经网络模型,得到受测者的径颈比。</description><language>chi ; eng</language><subject>DIAGNOSIS ; HUMAN NECESSITIES ; HYGIENE ; IDENTIFICATION ; MEDICAL OR VETERINARY SCIENCE ; SURGERY</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230829&amp;DB=EPODOC&amp;CC=CN&amp;NR=116649937A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25555,76308</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230829&amp;DB=EPODOC&amp;CC=CN&amp;NR=116649937A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG JINLONG</creatorcontrib><creatorcontrib>GAO LIYU</creatorcontrib><creatorcontrib>HUANG XINXIN</creatorcontrib><creatorcontrib>LIU ZEHUA</creatorcontrib><creatorcontrib>LIU KANG</creatorcontrib><creatorcontrib>CHAI RUOYU</creatorcontrib><creatorcontrib>LIU YANG</creatorcontrib><creatorcontrib>HOU XUEYAN</creatorcontrib><title>Morphological detection method for superficial aneurysm and wearable equipment</title><description>The invention provides a form detection method for superficial aneurysm and wearable equipment. The method comprises the following steps: step 1, constructing and training a diameter-neck ratio prediction neural network model; 2, synchronous ECG signals and PPG signals of a testee are obtained, feature parameters are extracted according to the ECG signals and the PPG signals, and the feature parameters comprise the maximum blood flow velocity, the blood flow velocity variation, the blood flow and the blood pressure; and step 3, generating a feature vector of the testee according to the extracted feature parameters, and inputting the feature vector into the trained diameter-neck ratio prediction neural network model to obtain the diameter-neck ratio of the testee. 本发明提供一种面向浅表层动脉瘤的形态检测方法和可穿戴式设备。该方法包括:步骤1:构建并训练径颈比预测神经网络模型;步骤2:获取受测者同步的ECG信号与PPG信号,根据所述ECG信号与PPG信号提取特征参数,所述特征参数包括最大血流速度、血流速度变化量、血液流量和血压;步骤3:根据提取到的特征参数生成受测者的特征向量,将所述特征向量输入至训练好的径颈比预测神经网络模型,得到受测者的径颈比。</description><subject>DIAGNOSIS</subject><subject>HUMAN NECESSITIES</subject><subject>HYGIENE</subject><subject>IDENTIFICATION</subject><subject>MEDICAL OR VETERINARY SCIENCE</subject><subject>SURGERY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyr0KwjAUhuEsDqLeQ7wAh1KpdCxFcbGTezkmX20gyYn5Qbx7O3gBTu87PGsx3DiGmS0_jSIrNTJUNuylQ55Zy4mjTCUgTkaZBZBHiZ_kltHyDYr0sJB4FRMcfN6K1UQ2YffrRuwv53t_PSDwiBRIwSOP_VBVTXNs2_rU1f-YL4mHN4E</recordid><startdate>20230829</startdate><enddate>20230829</enddate><creator>ZHANG JINLONG</creator><creator>GAO LIYU</creator><creator>HUANG XINXIN</creator><creator>LIU ZEHUA</creator><creator>LIU KANG</creator><creator>CHAI RUOYU</creator><creator>LIU YANG</creator><creator>HOU XUEYAN</creator><scope>EVB</scope></search><sort><creationdate>20230829</creationdate><title>Morphological detection method for superficial aneurysm and wearable equipment</title><author>ZHANG JINLONG ; GAO LIYU ; HUANG XINXIN ; LIU ZEHUA ; LIU KANG ; CHAI RUOYU ; LIU YANG ; HOU XUEYAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116649937A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>DIAGNOSIS</topic><topic>HUMAN NECESSITIES</topic><topic>HYGIENE</topic><topic>IDENTIFICATION</topic><topic>MEDICAL OR VETERINARY SCIENCE</topic><topic>SURGERY</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG JINLONG</creatorcontrib><creatorcontrib>GAO LIYU</creatorcontrib><creatorcontrib>HUANG XINXIN</creatorcontrib><creatorcontrib>LIU ZEHUA</creatorcontrib><creatorcontrib>LIU KANG</creatorcontrib><creatorcontrib>CHAI RUOYU</creatorcontrib><creatorcontrib>LIU YANG</creatorcontrib><creatorcontrib>HOU XUEYAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG JINLONG</au><au>GAO LIYU</au><au>HUANG XINXIN</au><au>LIU ZEHUA</au><au>LIU KANG</au><au>CHAI RUOYU</au><au>LIU YANG</au><au>HOU XUEYAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Morphological detection method for superficial aneurysm and wearable equipment</title><date>2023-08-29</date><risdate>2023</risdate><abstract>The invention provides a form detection method for superficial aneurysm and wearable equipment. The method comprises the following steps: step 1, constructing and training a diameter-neck ratio prediction neural network model; 2, synchronous ECG signals and PPG signals of a testee are obtained, feature parameters are extracted according to the ECG signals and the PPG signals, and the feature parameters comprise the maximum blood flow velocity, the blood flow velocity variation, the blood flow and the blood pressure; and step 3, generating a feature vector of the testee according to the extracted feature parameters, and inputting the feature vector into the trained diameter-neck ratio prediction neural network model to obtain the diameter-neck ratio of the testee. 本发明提供一种面向浅表层动脉瘤的形态检测方法和可穿戴式设备。该方法包括:步骤1:构建并训练径颈比预测神经网络模型;步骤2:获取受测者同步的ECG信号与PPG信号,根据所述ECG信号与PPG信号提取特征参数,所述特征参数包括最大血流速度、血流速度变化量、血液流量和血压;步骤3:根据提取到的特征参数生成受测者的特征向量,将所述特征向量输入至训练好的径颈比预测神经网络模型,得到受测者的径颈比。</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116649937A
source esp@cenet
subjects DIAGNOSIS
HUMAN NECESSITIES
HYGIENE
IDENTIFICATION
MEDICAL OR VETERINARY SCIENCE
SURGERY
title Morphological detection method for superficial aneurysm and wearable equipment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A14%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20JINLONG&rft.date=2023-08-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116649937A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true