Polyp segmentation method based on significance map guidance and uncertainty semantic enhancement
The invention discloses a polyp segmentation method based on significance map guidance and uncertainty semantic enhancement. According to a medical image to be segmented, firstly, a feature map and a saliency map are extracted through the trunk coding sub-network, higher-order feature representation...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | ZHENG JIANWEI GU YUBIN LI YAN LIU HAO FANG CHUANGJIE |
description | The invention discloses a polyp segmentation method based on significance map guidance and uncertainty semantic enhancement. According to a medical image to be segmented, firstly, a feature map and a saliency map are extracted through the trunk coding sub-network, higher-order feature representation is learned for the feature map through the second-order pooling convolution attention sub-network so as to enhance the nonlinear modeling capability, the feature map is guided through the uncertainty semantic enhancement sub-network by using the saliency map, and the non-linear modeling capability is enhanced. Namely, the network is guided to pay attention to learning of target area features, and finally, the significance map is subjected to up-sampling and activation functions to obtain a final prediction segmentation result of the medical image. The method tries to guide the network to pay attention to the learning of the features of the target region through the calculation of the significance and uncertainty o |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116630245A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116630245A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116630245A3</originalsourceid><addsrcrecordid>eNqNjDEKwkAQRbexEPUO4wEEYzS9BMVKLOzDuDvZDGRnF3dS5PYm4gGs_n_weEuDj9iPCTL5QKKoHAUCaRcdvDCTg4kze-GWLYolCJjAD-y-gOJgmM5bkUXHKRNQlC2QdLMwN9dm0WKfafPbldleL8_6tqMUG8oJLQlpU9-LoqrK_eF4Opf_OB9XVz5D</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Polyp segmentation method based on significance map guidance and uncertainty semantic enhancement</title><source>esp@cenet</source><creator>ZHENG JIANWEI ; GU YUBIN ; LI YAN ; LIU HAO ; FANG CHUANGJIE</creator><creatorcontrib>ZHENG JIANWEI ; GU YUBIN ; LI YAN ; LIU HAO ; FANG CHUANGJIE</creatorcontrib><description>The invention discloses a polyp segmentation method based on significance map guidance and uncertainty semantic enhancement. According to a medical image to be segmented, firstly, a feature map and a saliency map are extracted through the trunk coding sub-network, higher-order feature representation is learned for the feature map through the second-order pooling convolution attention sub-network so as to enhance the nonlinear modeling capability, the feature map is guided through the uncertainty semantic enhancement sub-network by using the saliency map, and the non-linear modeling capability is enhanced. Namely, the network is guided to pay attention to learning of target area features, and finally, the significance map is subjected to up-sampling and activation functions to obtain a final prediction segmentation result of the medical image. The method tries to guide the network to pay attention to the learning of the features of the target region through the calculation of the significance and uncertainty o</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230822&DB=EPODOC&CC=CN&NR=116630245A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230822&DB=EPODOC&CC=CN&NR=116630245A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHENG JIANWEI</creatorcontrib><creatorcontrib>GU YUBIN</creatorcontrib><creatorcontrib>LI YAN</creatorcontrib><creatorcontrib>LIU HAO</creatorcontrib><creatorcontrib>FANG CHUANGJIE</creatorcontrib><title>Polyp segmentation method based on significance map guidance and uncertainty semantic enhancement</title><description>The invention discloses a polyp segmentation method based on significance map guidance and uncertainty semantic enhancement. According to a medical image to be segmented, firstly, a feature map and a saliency map are extracted through the trunk coding sub-network, higher-order feature representation is learned for the feature map through the second-order pooling convolution attention sub-network so as to enhance the nonlinear modeling capability, the feature map is guided through the uncertainty semantic enhancement sub-network by using the saliency map, and the non-linear modeling capability is enhanced. Namely, the network is guided to pay attention to learning of target area features, and finally, the significance map is subjected to up-sampling and activation functions to obtain a final prediction segmentation result of the medical image. The method tries to guide the network to pay attention to the learning of the features of the target region through the calculation of the significance and uncertainty o</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDEKwkAQRbexEPUO4wEEYzS9BMVKLOzDuDvZDGRnF3dS5PYm4gGs_n_weEuDj9iPCTL5QKKoHAUCaRcdvDCTg4kze-GWLYolCJjAD-y-gOJgmM5bkUXHKRNQlC2QdLMwN9dm0WKfafPbldleL8_6tqMUG8oJLQlpU9-LoqrK_eF4Opf_OB9XVz5D</recordid><startdate>20230822</startdate><enddate>20230822</enddate><creator>ZHENG JIANWEI</creator><creator>GU YUBIN</creator><creator>LI YAN</creator><creator>LIU HAO</creator><creator>FANG CHUANGJIE</creator><scope>EVB</scope></search><sort><creationdate>20230822</creationdate><title>Polyp segmentation method based on significance map guidance and uncertainty semantic enhancement</title><author>ZHENG JIANWEI ; GU YUBIN ; LI YAN ; LIU HAO ; FANG CHUANGJIE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116630245A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHENG JIANWEI</creatorcontrib><creatorcontrib>GU YUBIN</creatorcontrib><creatorcontrib>LI YAN</creatorcontrib><creatorcontrib>LIU HAO</creatorcontrib><creatorcontrib>FANG CHUANGJIE</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHENG JIANWEI</au><au>GU YUBIN</au><au>LI YAN</au><au>LIU HAO</au><au>FANG CHUANGJIE</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Polyp segmentation method based on significance map guidance and uncertainty semantic enhancement</title><date>2023-08-22</date><risdate>2023</risdate><abstract>The invention discloses a polyp segmentation method based on significance map guidance and uncertainty semantic enhancement. According to a medical image to be segmented, firstly, a feature map and a saliency map are extracted through the trunk coding sub-network, higher-order feature representation is learned for the feature map through the second-order pooling convolution attention sub-network so as to enhance the nonlinear modeling capability, the feature map is guided through the uncertainty semantic enhancement sub-network by using the saliency map, and the non-linear modeling capability is enhanced. Namely, the network is guided to pay attention to learning of target area features, and finally, the significance map is subjected to up-sampling and activation functions to obtain a final prediction segmentation result of the medical image. The method tries to guide the network to pay attention to the learning of the features of the target region through the calculation of the significance and uncertainty o</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN116630245A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
title | Polyp segmentation method based on significance map guidance and uncertainty semantic enhancement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A49%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHENG%20JIANWEI&rft.date=2023-08-22&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116630245A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |