SAE-extreme random tree-based wave forecasting method
The invention provides a wave forecasting method based on an SAE-extreme random tree, and the method comprises the steps: firstly collecting the historical significant wave height, wind speed and wind direction data of a to-be-predicted point, predicting + 22h and + 24h wind speeds through employing...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | YU XI ZHANG YIPENG XIA HAO LUO ZHAO ZHU MINGQING PAN DAOHUI CHENG MAOLIN XIAO HAO LI DONGDONG ZHANG XIAOPING CHENG XUECONG TU TONGHENG DONG QIFENG |
description | The invention provides a wave forecasting method based on an SAE-extreme random tree, and the method comprises the steps: firstly collecting the historical significant wave height, wind speed and wind direction data of a to-be-predicted point, predicting + 22h and + 24h wind speeds through employing a seasonal difference moving average autoregression model, and then employing the-71h-0h significant wave height, wind speed and wind direction time sequence and + 22h and + 24h wind speed prediction values as features, employing the + 24h significant wave height as a target value, and carrying out the prediction of the + 22h and + 24h wind speeds. The method comprises the following steps: establishing a sample data set, finally training a sparse auto-encoder on the data set, extracting a sparse auto-encoder (SAE) hidden layer, and training an extreme random tree together with the original data set, thereby obtaining a complete + 24h significant wave height prediction model, and solving the problem that the freque |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116629103A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116629103A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116629103A3</originalsourceid><addsrcrecordid>eNrjZDANdnTVTa0oKUrNTVUoSsxLyc9VAHJSdZMSi1NTFMoTy1IV0vKLUpMTi0sy89IVclNLMvJTeBhY0xJzilN5oTQ3g6Kba4izh25qQX58anFBYnJqXmpJvLOfoaGZmZGloYGxozExagA7fCzc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SAE-extreme random tree-based wave forecasting method</title><source>esp@cenet</source><creator>YU XI ; ZHANG YIPENG ; XIA HAO ; LUO ZHAO ; ZHU MINGQING ; PAN DAOHUI ; CHENG MAOLIN ; XIAO HAO ; LI DONGDONG ; ZHANG XIAOPING ; CHENG XUECONG ; TU TONGHENG ; DONG QIFENG</creator><creatorcontrib>YU XI ; ZHANG YIPENG ; XIA HAO ; LUO ZHAO ; ZHU MINGQING ; PAN DAOHUI ; CHENG MAOLIN ; XIAO HAO ; LI DONGDONG ; ZHANG XIAOPING ; CHENG XUECONG ; TU TONGHENG ; DONG QIFENG</creatorcontrib><description>The invention provides a wave forecasting method based on an SAE-extreme random tree, and the method comprises the steps: firstly collecting the historical significant wave height, wind speed and wind direction data of a to-be-predicted point, predicting + 22h and + 24h wind speeds through employing a seasonal difference moving average autoregression model, and then employing the-71h-0h significant wave height, wind speed and wind direction time sequence and + 22h and + 24h wind speed prediction values as features, employing the + 24h significant wave height as a target value, and carrying out the prediction of the + 22h and + 24h wind speeds. The method comprises the following steps: establishing a sample data set, finally training a sparse auto-encoder on the data set, extracting a sparse auto-encoder (SAE) hidden layer, and training an extreme random tree together with the original data set, thereby obtaining a complete + 24h significant wave height prediction model, and solving the problem that the freque</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; GYROSCOPIC INSTRUMENTS ; MEASURING ; MEASURING DISTANCES, LEVELS OR BEARINGS ; NAVIGATION ; PHOTOGRAMMETRY OR VIDEOGRAMMETRY ; PHYSICS ; SURVEYING ; TESTING</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230822&DB=EPODOC&CC=CN&NR=116629103A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230822&DB=EPODOC&CC=CN&NR=116629103A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YU XI</creatorcontrib><creatorcontrib>ZHANG YIPENG</creatorcontrib><creatorcontrib>XIA HAO</creatorcontrib><creatorcontrib>LUO ZHAO</creatorcontrib><creatorcontrib>ZHU MINGQING</creatorcontrib><creatorcontrib>PAN DAOHUI</creatorcontrib><creatorcontrib>CHENG MAOLIN</creatorcontrib><creatorcontrib>XIAO HAO</creatorcontrib><creatorcontrib>LI DONGDONG</creatorcontrib><creatorcontrib>ZHANG XIAOPING</creatorcontrib><creatorcontrib>CHENG XUECONG</creatorcontrib><creatorcontrib>TU TONGHENG</creatorcontrib><creatorcontrib>DONG QIFENG</creatorcontrib><title>SAE-extreme random tree-based wave forecasting method</title><description>The invention provides a wave forecasting method based on an SAE-extreme random tree, and the method comprises the steps: firstly collecting the historical significant wave height, wind speed and wind direction data of a to-be-predicted point, predicting + 22h and + 24h wind speeds through employing a seasonal difference moving average autoregression model, and then employing the-71h-0h significant wave height, wind speed and wind direction time sequence and + 22h and + 24h wind speed prediction values as features, employing the + 24h significant wave height as a target value, and carrying out the prediction of the + 22h and + 24h wind speeds. The method comprises the following steps: establishing a sample data set, finally training a sparse auto-encoder on the data set, extracting a sparse auto-encoder (SAE) hidden layer, and training an extreme random tree together with the original data set, thereby obtaining a complete + 24h significant wave height prediction model, and solving the problem that the freque</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>GYROSCOPIC INSTRUMENTS</subject><subject>MEASURING</subject><subject>MEASURING DISTANCES, LEVELS OR BEARINGS</subject><subject>NAVIGATION</subject><subject>PHOTOGRAMMETRY OR VIDEOGRAMMETRY</subject><subject>PHYSICS</subject><subject>SURVEYING</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDANdnTVTa0oKUrNTVUoSsxLyc9VAHJSdZMSi1NTFMoTy1IV0vKLUpMTi0sy89IVclNLMvJTeBhY0xJzilN5oTQ3g6Kba4izh25qQX58anFBYnJqXmpJvLOfoaGZmZGloYGxozExagA7fCzc</recordid><startdate>20230822</startdate><enddate>20230822</enddate><creator>YU XI</creator><creator>ZHANG YIPENG</creator><creator>XIA HAO</creator><creator>LUO ZHAO</creator><creator>ZHU MINGQING</creator><creator>PAN DAOHUI</creator><creator>CHENG MAOLIN</creator><creator>XIAO HAO</creator><creator>LI DONGDONG</creator><creator>ZHANG XIAOPING</creator><creator>CHENG XUECONG</creator><creator>TU TONGHENG</creator><creator>DONG QIFENG</creator><scope>EVB</scope></search><sort><creationdate>20230822</creationdate><title>SAE-extreme random tree-based wave forecasting method</title><author>YU XI ; ZHANG YIPENG ; XIA HAO ; LUO ZHAO ; ZHU MINGQING ; PAN DAOHUI ; CHENG MAOLIN ; XIAO HAO ; LI DONGDONG ; ZHANG XIAOPING ; CHENG XUECONG ; TU TONGHENG ; DONG QIFENG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116629103A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>GYROSCOPIC INSTRUMENTS</topic><topic>MEASURING</topic><topic>MEASURING DISTANCES, LEVELS OR BEARINGS</topic><topic>NAVIGATION</topic><topic>PHOTOGRAMMETRY OR VIDEOGRAMMETRY</topic><topic>PHYSICS</topic><topic>SURVEYING</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>YU XI</creatorcontrib><creatorcontrib>ZHANG YIPENG</creatorcontrib><creatorcontrib>XIA HAO</creatorcontrib><creatorcontrib>LUO ZHAO</creatorcontrib><creatorcontrib>ZHU MINGQING</creatorcontrib><creatorcontrib>PAN DAOHUI</creatorcontrib><creatorcontrib>CHENG MAOLIN</creatorcontrib><creatorcontrib>XIAO HAO</creatorcontrib><creatorcontrib>LI DONGDONG</creatorcontrib><creatorcontrib>ZHANG XIAOPING</creatorcontrib><creatorcontrib>CHENG XUECONG</creatorcontrib><creatorcontrib>TU TONGHENG</creatorcontrib><creatorcontrib>DONG QIFENG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YU XI</au><au>ZHANG YIPENG</au><au>XIA HAO</au><au>LUO ZHAO</au><au>ZHU MINGQING</au><au>PAN DAOHUI</au><au>CHENG MAOLIN</au><au>XIAO HAO</au><au>LI DONGDONG</au><au>ZHANG XIAOPING</au><au>CHENG XUECONG</au><au>TU TONGHENG</au><au>DONG QIFENG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SAE-extreme random tree-based wave forecasting method</title><date>2023-08-22</date><risdate>2023</risdate><abstract>The invention provides a wave forecasting method based on an SAE-extreme random tree, and the method comprises the steps: firstly collecting the historical significant wave height, wind speed and wind direction data of a to-be-predicted point, predicting + 22h and + 24h wind speeds through employing a seasonal difference moving average autoregression model, and then employing the-71h-0h significant wave height, wind speed and wind direction time sequence and + 22h and + 24h wind speed prediction values as features, employing the + 24h significant wave height as a target value, and carrying out the prediction of the + 22h and + 24h wind speeds. The method comprises the following steps: establishing a sample data set, finally training a sparse auto-encoder on the data set, extracting a sparse auto-encoder (SAE) hidden layer, and training an extreme random tree together with the original data set, thereby obtaining a complete + 24h significant wave height prediction model, and solving the problem that the freque</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN116629103A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING GYROSCOPIC INSTRUMENTS MEASURING MEASURING DISTANCES, LEVELS OR BEARINGS NAVIGATION PHOTOGRAMMETRY OR VIDEOGRAMMETRY PHYSICS SURVEYING TESTING |
title | SAE-extreme random tree-based wave forecasting method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T09%3A32%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YU%20XI&rft.date=2023-08-22&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116629103A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |