SAE-extreme random tree-based wave forecasting method

The invention provides a wave forecasting method based on an SAE-extreme random tree, and the method comprises the steps: firstly collecting the historical significant wave height, wind speed and wind direction data of a to-be-predicted point, predicting + 22h and + 24h wind speeds through employing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: YU XI, ZHANG YIPENG, XIA HAO, LUO ZHAO, ZHU MINGQING, PAN DAOHUI, CHENG MAOLIN, XIAO HAO, LI DONGDONG, ZHANG XIAOPING, CHENG XUECONG, TU TONGHENG, DONG QIFENG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator YU XI
ZHANG YIPENG
XIA HAO
LUO ZHAO
ZHU MINGQING
PAN DAOHUI
CHENG MAOLIN
XIAO HAO
LI DONGDONG
ZHANG XIAOPING
CHENG XUECONG
TU TONGHENG
DONG QIFENG
description The invention provides a wave forecasting method based on an SAE-extreme random tree, and the method comprises the steps: firstly collecting the historical significant wave height, wind speed and wind direction data of a to-be-predicted point, predicting + 22h and + 24h wind speeds through employing a seasonal difference moving average autoregression model, and then employing the-71h-0h significant wave height, wind speed and wind direction time sequence and + 22h and + 24h wind speed prediction values as features, employing the + 24h significant wave height as a target value, and carrying out the prediction of the + 22h and + 24h wind speeds. The method comprises the following steps: establishing a sample data set, finally training a sparse auto-encoder on the data set, extracting a sparse auto-encoder (SAE) hidden layer, and training an extreme random tree together with the original data set, thereby obtaining a complete + 24h significant wave height prediction model, and solving the problem that the freque
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116629103A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116629103A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116629103A3</originalsourceid><addsrcrecordid>eNrjZDANdnTVTa0oKUrNTVUoSsxLyc9VAHJSdZMSi1NTFMoTy1IV0vKLUpMTi0sy89IVclNLMvJTeBhY0xJzilN5oTQ3g6Kba4izh25qQX58anFBYnJqXmpJvLOfoaGZmZGloYGxozExagA7fCzc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SAE-extreme random tree-based wave forecasting method</title><source>esp@cenet</source><creator>YU XI ; ZHANG YIPENG ; XIA HAO ; LUO ZHAO ; ZHU MINGQING ; PAN DAOHUI ; CHENG MAOLIN ; XIAO HAO ; LI DONGDONG ; ZHANG XIAOPING ; CHENG XUECONG ; TU TONGHENG ; DONG QIFENG</creator><creatorcontrib>YU XI ; ZHANG YIPENG ; XIA HAO ; LUO ZHAO ; ZHU MINGQING ; PAN DAOHUI ; CHENG MAOLIN ; XIAO HAO ; LI DONGDONG ; ZHANG XIAOPING ; CHENG XUECONG ; TU TONGHENG ; DONG QIFENG</creatorcontrib><description>The invention provides a wave forecasting method based on an SAE-extreme random tree, and the method comprises the steps: firstly collecting the historical significant wave height, wind speed and wind direction data of a to-be-predicted point, predicting + 22h and + 24h wind speeds through employing a seasonal difference moving average autoregression model, and then employing the-71h-0h significant wave height, wind speed and wind direction time sequence and + 22h and + 24h wind speed prediction values as features, employing the + 24h significant wave height as a target value, and carrying out the prediction of the + 22h and + 24h wind speeds. The method comprises the following steps: establishing a sample data set, finally training a sparse auto-encoder on the data set, extracting a sparse auto-encoder (SAE) hidden layer, and training an extreme random tree together with the original data set, thereby obtaining a complete + 24h significant wave height prediction model, and solving the problem that the freque</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; GYROSCOPIC INSTRUMENTS ; MEASURING ; MEASURING DISTANCES, LEVELS OR BEARINGS ; NAVIGATION ; PHOTOGRAMMETRY OR VIDEOGRAMMETRY ; PHYSICS ; SURVEYING ; TESTING</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230822&amp;DB=EPODOC&amp;CC=CN&amp;NR=116629103A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230822&amp;DB=EPODOC&amp;CC=CN&amp;NR=116629103A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YU XI</creatorcontrib><creatorcontrib>ZHANG YIPENG</creatorcontrib><creatorcontrib>XIA HAO</creatorcontrib><creatorcontrib>LUO ZHAO</creatorcontrib><creatorcontrib>ZHU MINGQING</creatorcontrib><creatorcontrib>PAN DAOHUI</creatorcontrib><creatorcontrib>CHENG MAOLIN</creatorcontrib><creatorcontrib>XIAO HAO</creatorcontrib><creatorcontrib>LI DONGDONG</creatorcontrib><creatorcontrib>ZHANG XIAOPING</creatorcontrib><creatorcontrib>CHENG XUECONG</creatorcontrib><creatorcontrib>TU TONGHENG</creatorcontrib><creatorcontrib>DONG QIFENG</creatorcontrib><title>SAE-extreme random tree-based wave forecasting method</title><description>The invention provides a wave forecasting method based on an SAE-extreme random tree, and the method comprises the steps: firstly collecting the historical significant wave height, wind speed and wind direction data of a to-be-predicted point, predicting + 22h and + 24h wind speeds through employing a seasonal difference moving average autoregression model, and then employing the-71h-0h significant wave height, wind speed and wind direction time sequence and + 22h and + 24h wind speed prediction values as features, employing the + 24h significant wave height as a target value, and carrying out the prediction of the + 22h and + 24h wind speeds. The method comprises the following steps: establishing a sample data set, finally training a sparse auto-encoder on the data set, extracting a sparse auto-encoder (SAE) hidden layer, and training an extreme random tree together with the original data set, thereby obtaining a complete + 24h significant wave height prediction model, and solving the problem that the freque</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>GYROSCOPIC INSTRUMENTS</subject><subject>MEASURING</subject><subject>MEASURING DISTANCES, LEVELS OR BEARINGS</subject><subject>NAVIGATION</subject><subject>PHOTOGRAMMETRY OR VIDEOGRAMMETRY</subject><subject>PHYSICS</subject><subject>SURVEYING</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDANdnTVTa0oKUrNTVUoSsxLyc9VAHJSdZMSi1NTFMoTy1IV0vKLUpMTi0sy89IVclNLMvJTeBhY0xJzilN5oTQ3g6Kba4izh25qQX58anFBYnJqXmpJvLOfoaGZmZGloYGxozExagA7fCzc</recordid><startdate>20230822</startdate><enddate>20230822</enddate><creator>YU XI</creator><creator>ZHANG YIPENG</creator><creator>XIA HAO</creator><creator>LUO ZHAO</creator><creator>ZHU MINGQING</creator><creator>PAN DAOHUI</creator><creator>CHENG MAOLIN</creator><creator>XIAO HAO</creator><creator>LI DONGDONG</creator><creator>ZHANG XIAOPING</creator><creator>CHENG XUECONG</creator><creator>TU TONGHENG</creator><creator>DONG QIFENG</creator><scope>EVB</scope></search><sort><creationdate>20230822</creationdate><title>SAE-extreme random tree-based wave forecasting method</title><author>YU XI ; ZHANG YIPENG ; XIA HAO ; LUO ZHAO ; ZHU MINGQING ; PAN DAOHUI ; CHENG MAOLIN ; XIAO HAO ; LI DONGDONG ; ZHANG XIAOPING ; CHENG XUECONG ; TU TONGHENG ; DONG QIFENG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116629103A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>GYROSCOPIC INSTRUMENTS</topic><topic>MEASURING</topic><topic>MEASURING DISTANCES, LEVELS OR BEARINGS</topic><topic>NAVIGATION</topic><topic>PHOTOGRAMMETRY OR VIDEOGRAMMETRY</topic><topic>PHYSICS</topic><topic>SURVEYING</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>YU XI</creatorcontrib><creatorcontrib>ZHANG YIPENG</creatorcontrib><creatorcontrib>XIA HAO</creatorcontrib><creatorcontrib>LUO ZHAO</creatorcontrib><creatorcontrib>ZHU MINGQING</creatorcontrib><creatorcontrib>PAN DAOHUI</creatorcontrib><creatorcontrib>CHENG MAOLIN</creatorcontrib><creatorcontrib>XIAO HAO</creatorcontrib><creatorcontrib>LI DONGDONG</creatorcontrib><creatorcontrib>ZHANG XIAOPING</creatorcontrib><creatorcontrib>CHENG XUECONG</creatorcontrib><creatorcontrib>TU TONGHENG</creatorcontrib><creatorcontrib>DONG QIFENG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YU XI</au><au>ZHANG YIPENG</au><au>XIA HAO</au><au>LUO ZHAO</au><au>ZHU MINGQING</au><au>PAN DAOHUI</au><au>CHENG MAOLIN</au><au>XIAO HAO</au><au>LI DONGDONG</au><au>ZHANG XIAOPING</au><au>CHENG XUECONG</au><au>TU TONGHENG</au><au>DONG QIFENG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SAE-extreme random tree-based wave forecasting method</title><date>2023-08-22</date><risdate>2023</risdate><abstract>The invention provides a wave forecasting method based on an SAE-extreme random tree, and the method comprises the steps: firstly collecting the historical significant wave height, wind speed and wind direction data of a to-be-predicted point, predicting + 22h and + 24h wind speeds through employing a seasonal difference moving average autoregression model, and then employing the-71h-0h significant wave height, wind speed and wind direction time sequence and + 22h and + 24h wind speed prediction values as features, employing the + 24h significant wave height as a target value, and carrying out the prediction of the + 22h and + 24h wind speeds. The method comprises the following steps: establishing a sample data set, finally training a sparse auto-encoder on the data set, extracting a sparse auto-encoder (SAE) hidden layer, and training an extreme random tree together with the original data set, thereby obtaining a complete + 24h significant wave height prediction model, and solving the problem that the freque</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116629103A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
GYROSCOPIC INSTRUMENTS
MEASURING
MEASURING DISTANCES, LEVELS OR BEARINGS
NAVIGATION
PHOTOGRAMMETRY OR VIDEOGRAMMETRY
PHYSICS
SURVEYING
TESTING
title SAE-extreme random tree-based wave forecasting method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T09%3A32%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YU%20XI&rft.date=2023-08-22&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116629103A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true