Pond mariculture water temperature prediction method based on machine learning

The invention discloses a machine learning-based pond mariculture water temperature prediction method. The method comprises the following steps of S1, creating a pond mariculture water temperature prediction model; S2, adjusting parameters to optimize the prediction model; s3, performing evaluation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: JIN KUIFENG, YANG YINGCAN, ZHANG YI, LI WENHUI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator JIN KUIFENG
YANG YINGCAN
ZHANG YI
LI WENHUI
description The invention discloses a machine learning-based pond mariculture water temperature prediction method. The method comprises the following steps of S1, creating a pond mariculture water temperature prediction model; S2, adjusting parameters to optimize the prediction model; s3, performing evaluation and determination on the optimized prediction model; and S4, inputting forecast data of meteorological factors into the determined prediction model, and carrying out pond mariculture water temperature forecast. According to the method, the pond seawater aquaculture water temperature can be predicted through the established prediction model, so that the pond seawater aquaculture production management is effectively guided, and the economic benefit is improved. 本发明公开了一种基于机器学习的池塘海水养殖水温的预测方法,包括以下步骤:S1、创建池塘海水养殖水温预测模型:S2、调整参数对所述预测模型进行优化;S3、对优化后的所述预测模型进行评估确定;S4、在确定的所述预测模型中输入气象因子的预报数据,进行池塘海水养殖水温预报。本发明能够通过创建的预测模型对池塘海水养殖水温进行预测,从而有效指导池塘海水水产养殖生产管理,提高经济效益。
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116579504A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116579504A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116579504A3</originalsourceid><addsrcrecordid>eNqNisEKwjAQBXvxIOo_rB8gWLSKRymKp-LBe1mTpw0km5Bs8fdF8QM8DTPMtOquUSwFzs6MXscMerEikyIkZP6WlGGdUReFAnSIlu5cYOnjbAYnIA_O4uQ5ryYP9gWLH2fV8ny6tZcVUuxREhsItG-7ut41-0Oz3h43_zxvaSQ3Iw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Pond mariculture water temperature prediction method based on machine learning</title><source>esp@cenet</source><creator>JIN KUIFENG ; YANG YINGCAN ; ZHANG YI ; LI WENHUI</creator><creatorcontrib>JIN KUIFENG ; YANG YINGCAN ; ZHANG YI ; LI WENHUI</creatorcontrib><description>The invention discloses a machine learning-based pond mariculture water temperature prediction method. The method comprises the following steps of S1, creating a pond mariculture water temperature prediction model; S2, adjusting parameters to optimize the prediction model; s3, performing evaluation and determination on the optimized prediction model; and S4, inputting forecast data of meteorological factors into the determined prediction model, and carrying out pond mariculture water temperature forecast. According to the method, the pond seawater aquaculture water temperature can be predicted through the established prediction model, so that the pond seawater aquaculture production management is effectively guided, and the economic benefit is improved. 本发明公开了一种基于机器学习的池塘海水养殖水温的预测方法,包括以下步骤:S1、创建池塘海水养殖水温预测模型:S2、调整参数对所述预测模型进行优化;S3、对优化后的所述预测模型进行评估确定;S4、在确定的所述预测模型中输入气象因子的预报数据,进行池塘海水养殖水温预报。本发明能够通过创建的预测模型对池塘海水养殖水温进行预测,从而有效指导池塘海水水产养殖生产管理,提高经济效益。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230811&amp;DB=EPODOC&amp;CC=CN&amp;NR=116579504A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76516</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230811&amp;DB=EPODOC&amp;CC=CN&amp;NR=116579504A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>JIN KUIFENG</creatorcontrib><creatorcontrib>YANG YINGCAN</creatorcontrib><creatorcontrib>ZHANG YI</creatorcontrib><creatorcontrib>LI WENHUI</creatorcontrib><title>Pond mariculture water temperature prediction method based on machine learning</title><description>The invention discloses a machine learning-based pond mariculture water temperature prediction method. The method comprises the following steps of S1, creating a pond mariculture water temperature prediction model; S2, adjusting parameters to optimize the prediction model; s3, performing evaluation and determination on the optimized prediction model; and S4, inputting forecast data of meteorological factors into the determined prediction model, and carrying out pond mariculture water temperature forecast. According to the method, the pond seawater aquaculture water temperature can be predicted through the established prediction model, so that the pond seawater aquaculture production management is effectively guided, and the economic benefit is improved. 本发明公开了一种基于机器学习的池塘海水养殖水温的预测方法,包括以下步骤:S1、创建池塘海水养殖水温预测模型:S2、调整参数对所述预测模型进行优化;S3、对优化后的所述预测模型进行评估确定;S4、在确定的所述预测模型中输入气象因子的预报数据,进行池塘海水养殖水温预报。本发明能够通过创建的预测模型对池塘海水养殖水温进行预测,从而有效指导池塘海水水产养殖生产管理,提高经济效益。</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNisEKwjAQBXvxIOo_rB8gWLSKRymKp-LBe1mTpw0km5Bs8fdF8QM8DTPMtOquUSwFzs6MXscMerEikyIkZP6WlGGdUReFAnSIlu5cYOnjbAYnIA_O4uQ5ryYP9gWLH2fV8ny6tZcVUuxREhsItG-7ut41-0Oz3h43_zxvaSQ3Iw</recordid><startdate>20230811</startdate><enddate>20230811</enddate><creator>JIN KUIFENG</creator><creator>YANG YINGCAN</creator><creator>ZHANG YI</creator><creator>LI WENHUI</creator><scope>EVB</scope></search><sort><creationdate>20230811</creationdate><title>Pond mariculture water temperature prediction method based on machine learning</title><author>JIN KUIFENG ; YANG YINGCAN ; ZHANG YI ; LI WENHUI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116579504A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>JIN KUIFENG</creatorcontrib><creatorcontrib>YANG YINGCAN</creatorcontrib><creatorcontrib>ZHANG YI</creatorcontrib><creatorcontrib>LI WENHUI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>JIN KUIFENG</au><au>YANG YINGCAN</au><au>ZHANG YI</au><au>LI WENHUI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Pond mariculture water temperature prediction method based on machine learning</title><date>2023-08-11</date><risdate>2023</risdate><abstract>The invention discloses a machine learning-based pond mariculture water temperature prediction method. The method comprises the following steps of S1, creating a pond mariculture water temperature prediction model; S2, adjusting parameters to optimize the prediction model; s3, performing evaluation and determination on the optimized prediction model; and S4, inputting forecast data of meteorological factors into the determined prediction model, and carrying out pond mariculture water temperature forecast. According to the method, the pond seawater aquaculture water temperature can be predicted through the established prediction model, so that the pond seawater aquaculture production management is effectively guided, and the economic benefit is improved. 本发明公开了一种基于机器学习的池塘海水养殖水温的预测方法,包括以下步骤:S1、创建池塘海水养殖水温预测模型:S2、调整参数对所述预测模型进行优化;S3、对优化后的所述预测模型进行评估确定;S4、在确定的所述预测模型中输入气象因子的预报数据,进行池塘海水养殖水温预报。本发明能够通过创建的预测模型对池塘海水养殖水温进行预测,从而有效指导池塘海水水产养殖生产管理,提高经济效益。</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116579504A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Pond mariculture water temperature prediction method based on machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T04%3A52%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=JIN%20KUIFENG&rft.date=2023-08-11&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116579504A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true