MRI (Magnetic Resonance Imaging) accelerated reconstruction system guided by multi-scale space-frequency domain feature information
The invention discloses an MRI (Magnetic Resonance Imaging) accelerated reconstruction system guided by multi-scale space-frequency domain feature information, which comprises an image acquisition module, an image accelerated reconstruction module and a prediction output module, and is characterized...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | SHI YONGHONG FU KEXUE MENG YUCONG DUAN MINGHONG |
description | The invention discloses an MRI (Magnetic Resonance Imaging) accelerated reconstruction system guided by multi-scale space-frequency domain feature information, which comprises an image acquisition module, an image accelerated reconstruction module and a prediction output module, and is characterized in that the image acquisition module is used for acquiring an original MRI image; the image acceleration reconstruction module is used for extracting a feature map from the original MRI image, performing energy spectrum weighting and implicit feature alignment on the feature map, and predicting a reconstructed MRI image; and the output module is used for outputting the predicted reconstructed MRI image. According to the method, a Fourier attention mechanism is provided, and spectrum features which are more beneficial to an MRI reconstruction task are extracted in a Fourier domain; according to the method, feature alignment is realized through implicit neural expression, so that features from different network dept |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116563409A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116563409A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116563409A3</originalsourceid><addsrcrecordid>eNqNjrsKwkAQRdNYiPoPY6dFQPEBliKKKbQQexknN2EhOxv3UaT2x33gB1jd4hwOt589T5eCJieuFdEIXRCcsgqosFwbrafEImjgOaIkD3Eaok8SjVMKXYiwVCdTvuG9I5uaaPIg3IBCy4K88ngkqHRUOstGqQLH5EFGK-ctfzrDrFdxEzD67SAbH_bX3TFH6274dt7vbrvzfL5erRfL2Wa7-Md5AQokSqE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>MRI (Magnetic Resonance Imaging) accelerated reconstruction system guided by multi-scale space-frequency domain feature information</title><source>esp@cenet</source><creator>SHI YONGHONG ; FU KEXUE ; MENG YUCONG ; DUAN MINGHONG</creator><creatorcontrib>SHI YONGHONG ; FU KEXUE ; MENG YUCONG ; DUAN MINGHONG</creatorcontrib><description>The invention discloses an MRI (Magnetic Resonance Imaging) accelerated reconstruction system guided by multi-scale space-frequency domain feature information, which comprises an image acquisition module, an image accelerated reconstruction module and a prediction output module, and is characterized in that the image acquisition module is used for acquiring an original MRI image; the image acceleration reconstruction module is used for extracting a feature map from the original MRI image, performing energy spectrum weighting and implicit feature alignment on the feature map, and predicting a reconstructed MRI image; and the output module is used for outputting the predicted reconstructed MRI image. According to the method, a Fourier attention mechanism is provided, and spectrum features which are more beneficial to an MRI reconstruction task are extracted in a Fourier domain; according to the method, feature alignment is realized through implicit neural expression, so that features from different network dept</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230808&DB=EPODOC&CC=CN&NR=116563409A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230808&DB=EPODOC&CC=CN&NR=116563409A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SHI YONGHONG</creatorcontrib><creatorcontrib>FU KEXUE</creatorcontrib><creatorcontrib>MENG YUCONG</creatorcontrib><creatorcontrib>DUAN MINGHONG</creatorcontrib><title>MRI (Magnetic Resonance Imaging) accelerated reconstruction system guided by multi-scale space-frequency domain feature information</title><description>The invention discloses an MRI (Magnetic Resonance Imaging) accelerated reconstruction system guided by multi-scale space-frequency domain feature information, which comprises an image acquisition module, an image accelerated reconstruction module and a prediction output module, and is characterized in that the image acquisition module is used for acquiring an original MRI image; the image acceleration reconstruction module is used for extracting a feature map from the original MRI image, performing energy spectrum weighting and implicit feature alignment on the feature map, and predicting a reconstructed MRI image; and the output module is used for outputting the predicted reconstructed MRI image. According to the method, a Fourier attention mechanism is provided, and spectrum features which are more beneficial to an MRI reconstruction task are extracted in a Fourier domain; according to the method, feature alignment is realized through implicit neural expression, so that features from different network dept</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjrsKwkAQRdNYiPoPY6dFQPEBliKKKbQQexknN2EhOxv3UaT2x33gB1jd4hwOt589T5eCJieuFdEIXRCcsgqosFwbrafEImjgOaIkD3Eaok8SjVMKXYiwVCdTvuG9I5uaaPIg3IBCy4K88ngkqHRUOstGqQLH5EFGK-ctfzrDrFdxEzD67SAbH_bX3TFH6274dt7vbrvzfL5erRfL2Wa7-Md5AQokSqE</recordid><startdate>20230808</startdate><enddate>20230808</enddate><creator>SHI YONGHONG</creator><creator>FU KEXUE</creator><creator>MENG YUCONG</creator><creator>DUAN MINGHONG</creator><scope>EVB</scope></search><sort><creationdate>20230808</creationdate><title>MRI (Magnetic Resonance Imaging) accelerated reconstruction system guided by multi-scale space-frequency domain feature information</title><author>SHI YONGHONG ; FU KEXUE ; MENG YUCONG ; DUAN MINGHONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116563409A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>SHI YONGHONG</creatorcontrib><creatorcontrib>FU KEXUE</creatorcontrib><creatorcontrib>MENG YUCONG</creatorcontrib><creatorcontrib>DUAN MINGHONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SHI YONGHONG</au><au>FU KEXUE</au><au>MENG YUCONG</au><au>DUAN MINGHONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>MRI (Magnetic Resonance Imaging) accelerated reconstruction system guided by multi-scale space-frequency domain feature information</title><date>2023-08-08</date><risdate>2023</risdate><abstract>The invention discloses an MRI (Magnetic Resonance Imaging) accelerated reconstruction system guided by multi-scale space-frequency domain feature information, which comprises an image acquisition module, an image accelerated reconstruction module and a prediction output module, and is characterized in that the image acquisition module is used for acquiring an original MRI image; the image acceleration reconstruction module is used for extracting a feature map from the original MRI image, performing energy spectrum weighting and implicit feature alignment on the feature map, and predicting a reconstructed MRI image; and the output module is used for outputting the predicted reconstructed MRI image. According to the method, a Fourier attention mechanism is provided, and spectrum features which are more beneficial to an MRI reconstruction task are extracted in a Fourier domain; according to the method, feature alignment is realized through implicit neural expression, so that features from different network dept</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN116563409A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
title | MRI (Magnetic Resonance Imaging) accelerated reconstruction system guided by multi-scale space-frequency domain feature information |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A47%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SHI%20YONGHONG&rft.date=2023-08-08&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116563409A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |