Coronary lumen and reference wall segmentation for automated assessment of coronary artery disease

Systems and methods for automated evaluation of vessels are provided. One or more input medical images of a vessel of a patient are received. A plurality of vessel evaluation tasks for evaluating vessels are performed using a machine learning-based model trained by utilizing multi-task learning. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: STOYAN DANIEL I, SCHOBINGER MAX, GOULSON MICHAEL A, SHARMA PRADEEP
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator STOYAN DANIEL I
SCHOBINGER MAX
GOULSON MICHAEL A
SHARMA PRADEEP
description Systems and methods for automated evaluation of vessels are provided. One or more input medical images of a vessel of a patient are received. A plurality of vessel evaluation tasks for evaluating vessels are performed using a machine learning-based model trained by utilizing multi-task learning. The plurality of vessel evaluation tasks include segmentation of a reference wall of the vessel from the one or more input medical images and segmentation of a lumen of the vessel from the one or more input medical images. And outputting the results of the plurality of vessel evaluation tasks. 提供了用于脉管的自动评估的系统和方法。接收患者的脉管的一个或多个输入医学图像。使用通过利用多任务学习被训练的基于机器学习的模型来执行用于评估脉管的多个脉管评估任务。所述多个脉管评估任务包括从所述一个或多个输入医学图像对脉管的参考壁的分割以及从所述一个或多个输入医学图像对脉管的管腔的分割。输出所述多个脉管评估任务的结果。
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116548930A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116548930A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116548930A3</originalsourceid><addsrcrecordid>eNqNjLEKAjEQBdNYiPoP6wcIHqeipQTFysr-WJMXOchlj2wO8e89QXurKWaYqblbyZI4vygOHRJx8pQRkJEc6MkxkuIxmsKllURBMvFQpOMCT6wK1Y8lCeR-K84FI3yrYMXcTAJHxeLLmVmeTzd7WaGXBtqzQ0Jp7LWqdtvN_lCvj_U_zRu5LD7p</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Coronary lumen and reference wall segmentation for automated assessment of coronary artery disease</title><source>esp@cenet</source><creator>STOYAN DANIEL I ; SCHOBINGER MAX ; GOULSON MICHAEL A ; SHARMA PRADEEP</creator><creatorcontrib>STOYAN DANIEL I ; SCHOBINGER MAX ; GOULSON MICHAEL A ; SHARMA PRADEEP</creatorcontrib><description>Systems and methods for automated evaluation of vessels are provided. One or more input medical images of a vessel of a patient are received. A plurality of vessel evaluation tasks for evaluating vessels are performed using a machine learning-based model trained by utilizing multi-task learning. The plurality of vessel evaluation tasks include segmentation of a reference wall of the vessel from the one or more input medical images and segmentation of a lumen of the vessel from the one or more input medical images. And outputting the results of the plurality of vessel evaluation tasks. 提供了用于脉管的自动评估的系统和方法。接收患者的脉管的一个或多个输入医学图像。使用通过利用多任务学习被训练的基于机器学习的模型来执行用于评估脉管的多个脉管评估任务。所述多个脉管评估任务包括从所述一个或多个输入医学图像对脉管的参考壁的分割以及从所述一个或多个输入医学图像对脉管的管腔的分割。输出所述多个脉管评估任务的结果。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DIAGNOSIS ; HUMAN NECESSITIES ; HYGIENE ; IDENTIFICATION ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; MEDICAL OR VETERINARY SCIENCE ; PHYSICS ; SURGERY</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230808&amp;DB=EPODOC&amp;CC=CN&amp;NR=116548930A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230808&amp;DB=EPODOC&amp;CC=CN&amp;NR=116548930A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>STOYAN DANIEL I</creatorcontrib><creatorcontrib>SCHOBINGER MAX</creatorcontrib><creatorcontrib>GOULSON MICHAEL A</creatorcontrib><creatorcontrib>SHARMA PRADEEP</creatorcontrib><title>Coronary lumen and reference wall segmentation for automated assessment of coronary artery disease</title><description>Systems and methods for automated evaluation of vessels are provided. One or more input medical images of a vessel of a patient are received. A plurality of vessel evaluation tasks for evaluating vessels are performed using a machine learning-based model trained by utilizing multi-task learning. The plurality of vessel evaluation tasks include segmentation of a reference wall of the vessel from the one or more input medical images and segmentation of a lumen of the vessel from the one or more input medical images. And outputting the results of the plurality of vessel evaluation tasks. 提供了用于脉管的自动评估的系统和方法。接收患者的脉管的一个或多个输入医学图像。使用通过利用多任务学习被训练的基于机器学习的模型来执行用于评估脉管的多个脉管评估任务。所述多个脉管评估任务包括从所述一个或多个输入医学图像对脉管的参考壁的分割以及从所述一个或多个输入医学图像对脉管的管腔的分割。输出所述多个脉管评估任务的结果。</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DIAGNOSIS</subject><subject>HUMAN NECESSITIES</subject><subject>HYGIENE</subject><subject>IDENTIFICATION</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>MEDICAL OR VETERINARY SCIENCE</subject><subject>PHYSICS</subject><subject>SURGERY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjLEKAjEQBdNYiPoP6wcIHqeipQTFysr-WJMXOchlj2wO8e89QXurKWaYqblbyZI4vygOHRJx8pQRkJEc6MkxkuIxmsKllURBMvFQpOMCT6wK1Y8lCeR-K84FI3yrYMXcTAJHxeLLmVmeTzd7WaGXBtqzQ0Jp7LWqdtvN_lCvj_U_zRu5LD7p</recordid><startdate>20230808</startdate><enddate>20230808</enddate><creator>STOYAN DANIEL I</creator><creator>SCHOBINGER MAX</creator><creator>GOULSON MICHAEL A</creator><creator>SHARMA PRADEEP</creator><scope>EVB</scope></search><sort><creationdate>20230808</creationdate><title>Coronary lumen and reference wall segmentation for automated assessment of coronary artery disease</title><author>STOYAN DANIEL I ; SCHOBINGER MAX ; GOULSON MICHAEL A ; SHARMA PRADEEP</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116548930A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DIAGNOSIS</topic><topic>HUMAN NECESSITIES</topic><topic>HYGIENE</topic><topic>IDENTIFICATION</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>MEDICAL OR VETERINARY SCIENCE</topic><topic>PHYSICS</topic><topic>SURGERY</topic><toplevel>online_resources</toplevel><creatorcontrib>STOYAN DANIEL I</creatorcontrib><creatorcontrib>SCHOBINGER MAX</creatorcontrib><creatorcontrib>GOULSON MICHAEL A</creatorcontrib><creatorcontrib>SHARMA PRADEEP</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>STOYAN DANIEL I</au><au>SCHOBINGER MAX</au><au>GOULSON MICHAEL A</au><au>SHARMA PRADEEP</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Coronary lumen and reference wall segmentation for automated assessment of coronary artery disease</title><date>2023-08-08</date><risdate>2023</risdate><abstract>Systems and methods for automated evaluation of vessels are provided. One or more input medical images of a vessel of a patient are received. A plurality of vessel evaluation tasks for evaluating vessels are performed using a machine learning-based model trained by utilizing multi-task learning. The plurality of vessel evaluation tasks include segmentation of a reference wall of the vessel from the one or more input medical images and segmentation of a lumen of the vessel from the one or more input medical images. And outputting the results of the plurality of vessel evaluation tasks. 提供了用于脉管的自动评估的系统和方法。接收患者的脉管的一个或多个输入医学图像。使用通过利用多任务学习被训练的基于机器学习的模型来执行用于评估脉管的多个脉管评估任务。所述多个脉管评估任务包括从所述一个或多个输入医学图像对脉管的参考壁的分割以及从所述一个或多个输入医学图像对脉管的管腔的分割。输出所述多个脉管评估任务的结果。</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116548930A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DIAGNOSIS
HUMAN NECESSITIES
HYGIENE
IDENTIFICATION
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
MEDICAL OR VETERINARY SCIENCE
PHYSICS
SURGERY
title Coronary lumen and reference wall segmentation for automated assessment of coronary artery disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A51%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=STOYAN%20DANIEL%20I&rft.date=2023-08-08&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116548930A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true