Single well production dynamic prediction method based on long and short term memory deep neural network

The invention discloses a single well production dynamic prediction method based on a long and short term memory deep neural network. The method comprises the following steps: acquiring an input historical data set X and an output historical data set Y; respectively extracting an input training set...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LI MENG, ZHAO HUAWEI, ZHANG WENBIAO, LI LINDI, DUAN TAIZHONG, LIU YANFENG, LIAN PEIQING, LI MIAO, LU WENMING, MA QIQI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LI MENG
ZHAO HUAWEI
ZHANG WENBIAO
LI LINDI
DUAN TAIZHONG
LIU YANFENG
LIAN PEIQING
LI MIAO
LU WENMING
MA QIQI
description The invention discloses a single well production dynamic prediction method based on a long and short term memory deep neural network. The method comprises the following steps: acquiring an input historical data set X and an output historical data set Y; respectively extracting an input training set X1 and an input test set X2 from the input historical data set X, and obtaining a production dynamic prediction model and an output test prediction set Y2 by applying a long-short term memory deep neural network; screening out a production dynamic prediction model meeting an expected effect through a root-mean-square error function; obtaining single-well production parameters and single-well production parameter constraint conditions, and generating a plurality of injection-production schemes by applying an optimization algorithm; and for each injection-production scheme, acquiring historical production dynamic data corresponding to each injection-production scheme, and sequentially applying the production dynamic
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116523086A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116523086A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116523086A3</originalsourceid><addsrcrecordid>eNqNikEKwjAUBbtxIeodvgcQ1GJxK0Vx5Ub3JfY_22CSH5KU0tsb0AO4GmaYedHftesMaIQx5IPw0CYtjnhyyuo2J7D-JovUC9NTRTBlN-I6Uo4p9hISJQSbHythIgY8OQxBmYw0Sngvi9lLmYjVj4tifTk_6usGXhpEr1rks6lvu1112JfbY3Uq_3k-J3BAkg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Single well production dynamic prediction method based on long and short term memory deep neural network</title><source>esp@cenet</source><creator>LI MENG ; ZHAO HUAWEI ; ZHANG WENBIAO ; LI LINDI ; DUAN TAIZHONG ; LIU YANFENG ; LIAN PEIQING ; LI MIAO ; LU WENMING ; MA QIQI</creator><creatorcontrib>LI MENG ; ZHAO HUAWEI ; ZHANG WENBIAO ; LI LINDI ; DUAN TAIZHONG ; LIU YANFENG ; LIAN PEIQING ; LI MIAO ; LU WENMING ; MA QIQI</creatorcontrib><description>The invention discloses a single well production dynamic prediction method based on a long and short term memory deep neural network. The method comprises the following steps: acquiring an input historical data set X and an output historical data set Y; respectively extracting an input training set X1 and an input test set X2 from the input historical data set X, and obtaining a production dynamic prediction model and an output test prediction set Y2 by applying a long-short term memory deep neural network; screening out a production dynamic prediction model meeting an expected effect through a root-mean-square error function; obtaining single-well production parameters and single-well production parameter constraint conditions, and generating a plurality of injection-production schemes by applying an optimization algorithm; and for each injection-production scheme, acquiring historical production dynamic data corresponding to each injection-production scheme, and sequentially applying the production dynamic</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230801&amp;DB=EPODOC&amp;CC=CN&amp;NR=116523086A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25546,76297</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230801&amp;DB=EPODOC&amp;CC=CN&amp;NR=116523086A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LI MENG</creatorcontrib><creatorcontrib>ZHAO HUAWEI</creatorcontrib><creatorcontrib>ZHANG WENBIAO</creatorcontrib><creatorcontrib>LI LINDI</creatorcontrib><creatorcontrib>DUAN TAIZHONG</creatorcontrib><creatorcontrib>LIU YANFENG</creatorcontrib><creatorcontrib>LIAN PEIQING</creatorcontrib><creatorcontrib>LI MIAO</creatorcontrib><creatorcontrib>LU WENMING</creatorcontrib><creatorcontrib>MA QIQI</creatorcontrib><title>Single well production dynamic prediction method based on long and short term memory deep neural network</title><description>The invention discloses a single well production dynamic prediction method based on a long and short term memory deep neural network. The method comprises the following steps: acquiring an input historical data set X and an output historical data set Y; respectively extracting an input training set X1 and an input test set X2 from the input historical data set X, and obtaining a production dynamic prediction model and an output test prediction set Y2 by applying a long-short term memory deep neural network; screening out a production dynamic prediction model meeting an expected effect through a root-mean-square error function; obtaining single-well production parameters and single-well production parameter constraint conditions, and generating a plurality of injection-production schemes by applying an optimization algorithm; and for each injection-production scheme, acquiring historical production dynamic data corresponding to each injection-production scheme, and sequentially applying the production dynamic</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNikEKwjAUBbtxIeodvgcQ1GJxK0Vx5Ub3JfY_22CSH5KU0tsb0AO4GmaYedHftesMaIQx5IPw0CYtjnhyyuo2J7D-JovUC9NTRTBlN-I6Uo4p9hISJQSbHythIgY8OQxBmYw0Sngvi9lLmYjVj4tifTk_6usGXhpEr1rks6lvu1112JfbY3Uq_3k-J3BAkg</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>LI MENG</creator><creator>ZHAO HUAWEI</creator><creator>ZHANG WENBIAO</creator><creator>LI LINDI</creator><creator>DUAN TAIZHONG</creator><creator>LIU YANFENG</creator><creator>LIAN PEIQING</creator><creator>LI MIAO</creator><creator>LU WENMING</creator><creator>MA QIQI</creator><scope>EVB</scope></search><sort><creationdate>20230801</creationdate><title>Single well production dynamic prediction method based on long and short term memory deep neural network</title><author>LI MENG ; ZHAO HUAWEI ; ZHANG WENBIAO ; LI LINDI ; DUAN TAIZHONG ; LIU YANFENG ; LIAN PEIQING ; LI MIAO ; LU WENMING ; MA QIQI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116523086A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>LI MENG</creatorcontrib><creatorcontrib>ZHAO HUAWEI</creatorcontrib><creatorcontrib>ZHANG WENBIAO</creatorcontrib><creatorcontrib>LI LINDI</creatorcontrib><creatorcontrib>DUAN TAIZHONG</creatorcontrib><creatorcontrib>LIU YANFENG</creatorcontrib><creatorcontrib>LIAN PEIQING</creatorcontrib><creatorcontrib>LI MIAO</creatorcontrib><creatorcontrib>LU WENMING</creatorcontrib><creatorcontrib>MA QIQI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LI MENG</au><au>ZHAO HUAWEI</au><au>ZHANG WENBIAO</au><au>LI LINDI</au><au>DUAN TAIZHONG</au><au>LIU YANFENG</au><au>LIAN PEIQING</au><au>LI MIAO</au><au>LU WENMING</au><au>MA QIQI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Single well production dynamic prediction method based on long and short term memory deep neural network</title><date>2023-08-01</date><risdate>2023</risdate><abstract>The invention discloses a single well production dynamic prediction method based on a long and short term memory deep neural network. The method comprises the following steps: acquiring an input historical data set X and an output historical data set Y; respectively extracting an input training set X1 and an input test set X2 from the input historical data set X, and obtaining a production dynamic prediction model and an output test prediction set Y2 by applying a long-short term memory deep neural network; screening out a production dynamic prediction model meeting an expected effect through a root-mean-square error function; obtaining single-well production parameters and single-well production parameter constraint conditions, and generating a plurality of injection-production schemes by applying an optimization algorithm; and for each injection-production scheme, acquiring historical production dynamic data corresponding to each injection-production scheme, and sequentially applying the production dynamic</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116523086A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Single well production dynamic prediction method based on long and short term memory deep neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A59%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LI%20MENG&rft.date=2023-08-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116523086A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true