Industrial control system anomaly detection method based on Taguchi method

The invention provides an industrial control system anomaly detection method based on a Taguchi method, and the method comprises the following steps: carrying out the oversampling and normalization processing of a data set, and dividing the data set into a training set and a test set; carrying out b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHAO HUIQI, MA YAOWEN, XUAN QILIN, FAN FANG, SUN SHUNFA, GUO YULONG, LI YING, LIU LU, LEI RUI, ZHANG HUAJIE
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHAO HUIQI
MA YAOWEN
XUAN QILIN
FAN FANG
SUN SHUNFA
GUO YULONG
LI YING
LIU LU
LEI RUI
ZHANG HUAJIE
description The invention provides an industrial control system anomaly detection method based on a Taguchi method, and the method comprises the following steps: carrying out the oversampling and normalization processing of a data set, and dividing the data set into a training set and a test set; carrying out binarization processing on the GSK algorithm by using a U-shaped transfer function; aiming at a specific target problem, customizing a group of optimal parameter combinations for the binarized GSK algorithm by using a Taguchi algorithm, and providing parameter settings according to the property of a specific target; selecting features through a customized binary GSK algorithm; and inputting the selected optimal feature subset into an LSTM neural network to train a model, and obtaining an LSTM-based industrial control system anomaly detection model. According to the technical scheme, the problems that in the prior art, an anomaly detection model is prone to being affected by redundant features, the detection precisio
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116520795A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116520795A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116520795A3</originalsourceid><addsrcrecordid>eNrjZPDyzEspLS4pykzMUUjOzyspys9RKK4sLknNVUjMy89NzKlUSEktSU0uyczPU8hNLcnIT1FISixOTVEA8kMS00uTMzKh4jwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5NS-1JN7Zz9DQzNTIwNzS1NGYGDUAX1I1cQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Industrial control system anomaly detection method based on Taguchi method</title><source>esp@cenet</source><creator>ZHAO HUIQI ; MA YAOWEN ; XUAN QILIN ; FAN FANG ; SUN SHUNFA ; GUO YULONG ; LI YING ; LIU LU ; LEI RUI ; ZHANG HUAJIE</creator><creatorcontrib>ZHAO HUIQI ; MA YAOWEN ; XUAN QILIN ; FAN FANG ; SUN SHUNFA ; GUO YULONG ; LI YING ; LIU LU ; LEI RUI ; ZHANG HUAJIE</creatorcontrib><description>The invention provides an industrial control system anomaly detection method based on a Taguchi method, and the method comprises the following steps: carrying out the oversampling and normalization processing of a data set, and dividing the data set into a training set and a test set; carrying out binarization processing on the GSK algorithm by using a U-shaped transfer function; aiming at a specific target problem, customizing a group of optimal parameter combinations for the binarized GSK algorithm by using a Taguchi algorithm, and providing parameter settings according to the property of a specific target; selecting features through a customized binary GSK algorithm; and inputting the selected optimal feature subset into an LSTM neural network to train a model, and obtaining an LSTM-based industrial control system anomaly detection model. According to the technical scheme, the problems that in the prior art, an anomaly detection model is prone to being affected by redundant features, the detection precisio</description><language>chi ; eng</language><subject>CONTROL OR REGULATING SYSTEMS IN GENERAL ; CONTROLLING ; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS ; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS ; PHYSICS ; REGULATING</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230801&amp;DB=EPODOC&amp;CC=CN&amp;NR=116520795A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76418</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230801&amp;DB=EPODOC&amp;CC=CN&amp;NR=116520795A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHAO HUIQI</creatorcontrib><creatorcontrib>MA YAOWEN</creatorcontrib><creatorcontrib>XUAN QILIN</creatorcontrib><creatorcontrib>FAN FANG</creatorcontrib><creatorcontrib>SUN SHUNFA</creatorcontrib><creatorcontrib>GUO YULONG</creatorcontrib><creatorcontrib>LI YING</creatorcontrib><creatorcontrib>LIU LU</creatorcontrib><creatorcontrib>LEI RUI</creatorcontrib><creatorcontrib>ZHANG HUAJIE</creatorcontrib><title>Industrial control system anomaly detection method based on Taguchi method</title><description>The invention provides an industrial control system anomaly detection method based on a Taguchi method, and the method comprises the following steps: carrying out the oversampling and normalization processing of a data set, and dividing the data set into a training set and a test set; carrying out binarization processing on the GSK algorithm by using a U-shaped transfer function; aiming at a specific target problem, customizing a group of optimal parameter combinations for the binarized GSK algorithm by using a Taguchi algorithm, and providing parameter settings according to the property of a specific target; selecting features through a customized binary GSK algorithm; and inputting the selected optimal feature subset into an LSTM neural network to train a model, and obtaining an LSTM-based industrial control system anomaly detection model. According to the technical scheme, the problems that in the prior art, an anomaly detection model is prone to being affected by redundant features, the detection precisio</description><subject>CONTROL OR REGULATING SYSTEMS IN GENERAL</subject><subject>CONTROLLING</subject><subject>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</subject><subject>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</subject><subject>PHYSICS</subject><subject>REGULATING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPDyzEspLS4pykzMUUjOzyspys9RKK4sLknNVUjMy89NzKlUSEktSU0uyczPU8hNLcnIT1FISixOTVEA8kMS00uTMzKh4jwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5NS-1JN7Zz9DQzNTIwNzS1NGYGDUAX1I1cQ</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>ZHAO HUIQI</creator><creator>MA YAOWEN</creator><creator>XUAN QILIN</creator><creator>FAN FANG</creator><creator>SUN SHUNFA</creator><creator>GUO YULONG</creator><creator>LI YING</creator><creator>LIU LU</creator><creator>LEI RUI</creator><creator>ZHANG HUAJIE</creator><scope>EVB</scope></search><sort><creationdate>20230801</creationdate><title>Industrial control system anomaly detection method based on Taguchi method</title><author>ZHAO HUIQI ; MA YAOWEN ; XUAN QILIN ; FAN FANG ; SUN SHUNFA ; GUO YULONG ; LI YING ; LIU LU ; LEI RUI ; ZHANG HUAJIE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116520795A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CONTROL OR REGULATING SYSTEMS IN GENERAL</topic><topic>CONTROLLING</topic><topic>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</topic><topic>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</topic><topic>PHYSICS</topic><topic>REGULATING</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHAO HUIQI</creatorcontrib><creatorcontrib>MA YAOWEN</creatorcontrib><creatorcontrib>XUAN QILIN</creatorcontrib><creatorcontrib>FAN FANG</creatorcontrib><creatorcontrib>SUN SHUNFA</creatorcontrib><creatorcontrib>GUO YULONG</creatorcontrib><creatorcontrib>LI YING</creatorcontrib><creatorcontrib>LIU LU</creatorcontrib><creatorcontrib>LEI RUI</creatorcontrib><creatorcontrib>ZHANG HUAJIE</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHAO HUIQI</au><au>MA YAOWEN</au><au>XUAN QILIN</au><au>FAN FANG</au><au>SUN SHUNFA</au><au>GUO YULONG</au><au>LI YING</au><au>LIU LU</au><au>LEI RUI</au><au>ZHANG HUAJIE</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Industrial control system anomaly detection method based on Taguchi method</title><date>2023-08-01</date><risdate>2023</risdate><abstract>The invention provides an industrial control system anomaly detection method based on a Taguchi method, and the method comprises the following steps: carrying out the oversampling and normalization processing of a data set, and dividing the data set into a training set and a test set; carrying out binarization processing on the GSK algorithm by using a U-shaped transfer function; aiming at a specific target problem, customizing a group of optimal parameter combinations for the binarized GSK algorithm by using a Taguchi algorithm, and providing parameter settings according to the property of a specific target; selecting features through a customized binary GSK algorithm; and inputting the selected optimal feature subset into an LSTM neural network to train a model, and obtaining an LSTM-based industrial control system anomaly detection model. According to the technical scheme, the problems that in the prior art, an anomaly detection model is prone to being affected by redundant features, the detection precisio</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116520795A
source esp@cenet
subjects CONTROL OR REGULATING SYSTEMS IN GENERAL
CONTROLLING
FUNCTIONAL ELEMENTS OF SUCH SYSTEMS
MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS
PHYSICS
REGULATING
title Industrial control system anomaly detection method based on Taguchi method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A37%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHAO%20HUIQI&rft.date=2023-08-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116520795A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true