Industrial control system anomaly detection method based on Taguchi method
The invention provides an industrial control system anomaly detection method based on a Taguchi method, and the method comprises the following steps: carrying out the oversampling and normalization processing of a data set, and dividing the data set into a training set and a test set; carrying out b...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | ZHAO HUIQI MA YAOWEN XUAN QILIN FAN FANG SUN SHUNFA GUO YULONG LI YING LIU LU LEI RUI ZHANG HUAJIE |
description | The invention provides an industrial control system anomaly detection method based on a Taguchi method, and the method comprises the following steps: carrying out the oversampling and normalization processing of a data set, and dividing the data set into a training set and a test set; carrying out binarization processing on the GSK algorithm by using a U-shaped transfer function; aiming at a specific target problem, customizing a group of optimal parameter combinations for the binarized GSK algorithm by using a Taguchi algorithm, and providing parameter settings according to the property of a specific target; selecting features through a customized binary GSK algorithm; and inputting the selected optimal feature subset into an LSTM neural network to train a model, and obtaining an LSTM-based industrial control system anomaly detection model. According to the technical scheme, the problems that in the prior art, an anomaly detection model is prone to being affected by redundant features, the detection precisio |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116520795A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116520795A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116520795A3</originalsourceid><addsrcrecordid>eNrjZPDyzEspLS4pykzMUUjOzyspys9RKK4sLknNVUjMy89NzKlUSEktSU0uyczPU8hNLcnIT1FISixOTVEA8kMS00uTMzKh4jwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5NS-1JN7Zz9DQzNTIwNzS1NGYGDUAX1I1cQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Industrial control system anomaly detection method based on Taguchi method</title><source>esp@cenet</source><creator>ZHAO HUIQI ; MA YAOWEN ; XUAN QILIN ; FAN FANG ; SUN SHUNFA ; GUO YULONG ; LI YING ; LIU LU ; LEI RUI ; ZHANG HUAJIE</creator><creatorcontrib>ZHAO HUIQI ; MA YAOWEN ; XUAN QILIN ; FAN FANG ; SUN SHUNFA ; GUO YULONG ; LI YING ; LIU LU ; LEI RUI ; ZHANG HUAJIE</creatorcontrib><description>The invention provides an industrial control system anomaly detection method based on a Taguchi method, and the method comprises the following steps: carrying out the oversampling and normalization processing of a data set, and dividing the data set into a training set and a test set; carrying out binarization processing on the GSK algorithm by using a U-shaped transfer function; aiming at a specific target problem, customizing a group of optimal parameter combinations for the binarized GSK algorithm by using a Taguchi algorithm, and providing parameter settings according to the property of a specific target; selecting features through a customized binary GSK algorithm; and inputting the selected optimal feature subset into an LSTM neural network to train a model, and obtaining an LSTM-based industrial control system anomaly detection model. According to the technical scheme, the problems that in the prior art, an anomaly detection model is prone to being affected by redundant features, the detection precisio</description><language>chi ; eng</language><subject>CONTROL OR REGULATING SYSTEMS IN GENERAL ; CONTROLLING ; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS ; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS ; PHYSICS ; REGULATING</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230801&DB=EPODOC&CC=CN&NR=116520795A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76418</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230801&DB=EPODOC&CC=CN&NR=116520795A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHAO HUIQI</creatorcontrib><creatorcontrib>MA YAOWEN</creatorcontrib><creatorcontrib>XUAN QILIN</creatorcontrib><creatorcontrib>FAN FANG</creatorcontrib><creatorcontrib>SUN SHUNFA</creatorcontrib><creatorcontrib>GUO YULONG</creatorcontrib><creatorcontrib>LI YING</creatorcontrib><creatorcontrib>LIU LU</creatorcontrib><creatorcontrib>LEI RUI</creatorcontrib><creatorcontrib>ZHANG HUAJIE</creatorcontrib><title>Industrial control system anomaly detection method based on Taguchi method</title><description>The invention provides an industrial control system anomaly detection method based on a Taguchi method, and the method comprises the following steps: carrying out the oversampling and normalization processing of a data set, and dividing the data set into a training set and a test set; carrying out binarization processing on the GSK algorithm by using a U-shaped transfer function; aiming at a specific target problem, customizing a group of optimal parameter combinations for the binarized GSK algorithm by using a Taguchi algorithm, and providing parameter settings according to the property of a specific target; selecting features through a customized binary GSK algorithm; and inputting the selected optimal feature subset into an LSTM neural network to train a model, and obtaining an LSTM-based industrial control system anomaly detection model. According to the technical scheme, the problems that in the prior art, an anomaly detection model is prone to being affected by redundant features, the detection precisio</description><subject>CONTROL OR REGULATING SYSTEMS IN GENERAL</subject><subject>CONTROLLING</subject><subject>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</subject><subject>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</subject><subject>PHYSICS</subject><subject>REGULATING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPDyzEspLS4pykzMUUjOzyspys9RKK4sLknNVUjMy89NzKlUSEktSU0uyczPU8hNLcnIT1FISixOTVEA8kMS00uTMzKh4jwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5NS-1JN7Zz9DQzNTIwNzS1NGYGDUAX1I1cQ</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>ZHAO HUIQI</creator><creator>MA YAOWEN</creator><creator>XUAN QILIN</creator><creator>FAN FANG</creator><creator>SUN SHUNFA</creator><creator>GUO YULONG</creator><creator>LI YING</creator><creator>LIU LU</creator><creator>LEI RUI</creator><creator>ZHANG HUAJIE</creator><scope>EVB</scope></search><sort><creationdate>20230801</creationdate><title>Industrial control system anomaly detection method based on Taguchi method</title><author>ZHAO HUIQI ; MA YAOWEN ; XUAN QILIN ; FAN FANG ; SUN SHUNFA ; GUO YULONG ; LI YING ; LIU LU ; LEI RUI ; ZHANG HUAJIE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116520795A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CONTROL OR REGULATING SYSTEMS IN GENERAL</topic><topic>CONTROLLING</topic><topic>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</topic><topic>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</topic><topic>PHYSICS</topic><topic>REGULATING</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHAO HUIQI</creatorcontrib><creatorcontrib>MA YAOWEN</creatorcontrib><creatorcontrib>XUAN QILIN</creatorcontrib><creatorcontrib>FAN FANG</creatorcontrib><creatorcontrib>SUN SHUNFA</creatorcontrib><creatorcontrib>GUO YULONG</creatorcontrib><creatorcontrib>LI YING</creatorcontrib><creatorcontrib>LIU LU</creatorcontrib><creatorcontrib>LEI RUI</creatorcontrib><creatorcontrib>ZHANG HUAJIE</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHAO HUIQI</au><au>MA YAOWEN</au><au>XUAN QILIN</au><au>FAN FANG</au><au>SUN SHUNFA</au><au>GUO YULONG</au><au>LI YING</au><au>LIU LU</au><au>LEI RUI</au><au>ZHANG HUAJIE</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Industrial control system anomaly detection method based on Taguchi method</title><date>2023-08-01</date><risdate>2023</risdate><abstract>The invention provides an industrial control system anomaly detection method based on a Taguchi method, and the method comprises the following steps: carrying out the oversampling and normalization processing of a data set, and dividing the data set into a training set and a test set; carrying out binarization processing on the GSK algorithm by using a U-shaped transfer function; aiming at a specific target problem, customizing a group of optimal parameter combinations for the binarized GSK algorithm by using a Taguchi algorithm, and providing parameter settings according to the property of a specific target; selecting features through a customized binary GSK algorithm; and inputting the selected optimal feature subset into an LSTM neural network to train a model, and obtaining an LSTM-based industrial control system anomaly detection model. According to the technical scheme, the problems that in the prior art, an anomaly detection model is prone to being affected by redundant features, the detection precisio</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN116520795A |
source | esp@cenet |
subjects | CONTROL OR REGULATING SYSTEMS IN GENERAL CONTROLLING FUNCTIONAL ELEMENTS OF SUCH SYSTEMS MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS PHYSICS REGULATING |
title | Industrial control system anomaly detection method based on Taguchi method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A37%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHAO%20HUIQI&rft.date=2023-08-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116520795A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |