RFID finger trace identification method and device based on small sample learning

The invention discloses an RFID finger trace identification method based on small sample learning, and the method comprises the steps: firstly obtaining an original finger reflection signal which is transmitted by a tag array and has a time sequence characteristic; secondly, performing feature extra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LI SIJIE, QIAN WEIHUA, ZENG WENHUA, LIN FAN, YU BO, YANG LYUQING, LIAO MINGHONG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LI SIJIE
QIAN WEIHUA
ZENG WENHUA
LIN FAN
YU BO
YANG LYUQING
LIAO MINGHONG
description The invention discloses an RFID finger trace identification method based on small sample learning, and the method comprises the steps: firstly obtaining an original finger reflection signal which is transmitted by a tag array and has a time sequence characteristic; secondly, performing feature extraction on the original finger reflection signal to obtain a visual finger trace space feature map; and finally, constructing a trace identification model, and inputting the finger trace space feature map into the trace identification model so as to complete identification of the finger trace space feature map. Therefore, high-precision and fine-grained finger trace identification can be realized under the condition that a human body does not need to wear any equipment and extremely few training samples. 本发明公开了一种基于小样本学习的RFID手指踪迹识别方法,首先,获取标签阵列发送的带有时序性特征的原始手指反射信号;接着,对原始手指反射信号进行特征提取,以得到可视化的手指踪迹空间特征图;最后,构建踪迹识别模型,并将手指踪迹空间特征图输入到踪迹识别模型,以便完成对手指踪迹空间特征图的识别;由此,能够在无需人体佩戴任何设备和极少数训练样本的情况下实现高精度、细粒度的手指踪迹识别。
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116503437A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116503437A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116503437A3</originalsourceid><addsrcrecordid>eNqNjTsKAjEURaexEHUPzwUIDvFTy-igjaDYD8_JjT7IjyS4flO4AKtT3MM90-Z27y9HMuJfSFQSjyDR8EWMjFwkeHIo76CJvSaNj1ThyRma6pQdW0uZXbQgC06-_sybiWGbsfhx1iz706M7rxDDgBxrwqMM3bVtd9u12qj9Qf3jfAFtUjb4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>RFID finger trace identification method and device based on small sample learning</title><source>esp@cenet</source><creator>LI SIJIE ; QIAN WEIHUA ; ZENG WENHUA ; LIN FAN ; YU BO ; YANG LYUQING ; LIAO MINGHONG</creator><creatorcontrib>LI SIJIE ; QIAN WEIHUA ; ZENG WENHUA ; LIN FAN ; YU BO ; YANG LYUQING ; LIAO MINGHONG</creatorcontrib><description>The invention discloses an RFID finger trace identification method based on small sample learning, and the method comprises the steps: firstly obtaining an original finger reflection signal which is transmitted by a tag array and has a time sequence characteristic; secondly, performing feature extraction on the original finger reflection signal to obtain a visual finger trace space feature map; and finally, constructing a trace identification model, and inputting the finger trace space feature map into the trace identification model so as to complete identification of the finger trace space feature map. Therefore, high-precision and fine-grained finger trace identification can be realized under the condition that a human body does not need to wear any equipment and extremely few training samples. 本发明公开了一种基于小样本学习的RFID手指踪迹识别方法,首先,获取标签阵列发送的带有时序性特征的原始手指反射信号;接着,对原始手指反射信号进行特征提取,以得到可视化的手指踪迹空间特征图;最后,构建踪迹识别模型,并将手指踪迹空间特征图输入到踪迹识别模型,以便完成对手指踪迹空间特征图的识别;由此,能够在无需人体佩戴任何设备和极少数训练样本的情况下实现高精度、细粒度的手指踪迹识别。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230728&amp;DB=EPODOC&amp;CC=CN&amp;NR=116503437A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230728&amp;DB=EPODOC&amp;CC=CN&amp;NR=116503437A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LI SIJIE</creatorcontrib><creatorcontrib>QIAN WEIHUA</creatorcontrib><creatorcontrib>ZENG WENHUA</creatorcontrib><creatorcontrib>LIN FAN</creatorcontrib><creatorcontrib>YU BO</creatorcontrib><creatorcontrib>YANG LYUQING</creatorcontrib><creatorcontrib>LIAO MINGHONG</creatorcontrib><title>RFID finger trace identification method and device based on small sample learning</title><description>The invention discloses an RFID finger trace identification method based on small sample learning, and the method comprises the steps: firstly obtaining an original finger reflection signal which is transmitted by a tag array and has a time sequence characteristic; secondly, performing feature extraction on the original finger reflection signal to obtain a visual finger trace space feature map; and finally, constructing a trace identification model, and inputting the finger trace space feature map into the trace identification model so as to complete identification of the finger trace space feature map. Therefore, high-precision and fine-grained finger trace identification can be realized under the condition that a human body does not need to wear any equipment and extremely few training samples. 本发明公开了一种基于小样本学习的RFID手指踪迹识别方法,首先,获取标签阵列发送的带有时序性特征的原始手指反射信号;接着,对原始手指反射信号进行特征提取,以得到可视化的手指踪迹空间特征图;最后,构建踪迹识别模型,并将手指踪迹空间特征图输入到踪迹识别模型,以便完成对手指踪迹空间特征图的识别;由此,能够在无需人体佩戴任何设备和极少数训练样本的情况下实现高精度、细粒度的手指踪迹识别。</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjTsKAjEURaexEHUPzwUIDvFTy-igjaDYD8_JjT7IjyS4flO4AKtT3MM90-Z27y9HMuJfSFQSjyDR8EWMjFwkeHIo76CJvSaNj1ThyRma6pQdW0uZXbQgC06-_sybiWGbsfhx1iz706M7rxDDgBxrwqMM3bVtd9u12qj9Qf3jfAFtUjb4</recordid><startdate>20230728</startdate><enddate>20230728</enddate><creator>LI SIJIE</creator><creator>QIAN WEIHUA</creator><creator>ZENG WENHUA</creator><creator>LIN FAN</creator><creator>YU BO</creator><creator>YANG LYUQING</creator><creator>LIAO MINGHONG</creator><scope>EVB</scope></search><sort><creationdate>20230728</creationdate><title>RFID finger trace identification method and device based on small sample learning</title><author>LI SIJIE ; QIAN WEIHUA ; ZENG WENHUA ; LIN FAN ; YU BO ; YANG LYUQING ; LIAO MINGHONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116503437A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>LI SIJIE</creatorcontrib><creatorcontrib>QIAN WEIHUA</creatorcontrib><creatorcontrib>ZENG WENHUA</creatorcontrib><creatorcontrib>LIN FAN</creatorcontrib><creatorcontrib>YU BO</creatorcontrib><creatorcontrib>YANG LYUQING</creatorcontrib><creatorcontrib>LIAO MINGHONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LI SIJIE</au><au>QIAN WEIHUA</au><au>ZENG WENHUA</au><au>LIN FAN</au><au>YU BO</au><au>YANG LYUQING</au><au>LIAO MINGHONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>RFID finger trace identification method and device based on small sample learning</title><date>2023-07-28</date><risdate>2023</risdate><abstract>The invention discloses an RFID finger trace identification method based on small sample learning, and the method comprises the steps: firstly obtaining an original finger reflection signal which is transmitted by a tag array and has a time sequence characteristic; secondly, performing feature extraction on the original finger reflection signal to obtain a visual finger trace space feature map; and finally, constructing a trace identification model, and inputting the finger trace space feature map into the trace identification model so as to complete identification of the finger trace space feature map. Therefore, high-precision and fine-grained finger trace identification can be realized under the condition that a human body does not need to wear any equipment and extremely few training samples. 本发明公开了一种基于小样本学习的RFID手指踪迹识别方法,首先,获取标签阵列发送的带有时序性特征的原始手指反射信号;接着,对原始手指反射信号进行特征提取,以得到可视化的手指踪迹空间特征图;最后,构建踪迹识别模型,并将手指踪迹空间特征图输入到踪迹识别模型,以便完成对手指踪迹空间特征图的识别;由此,能够在无需人体佩戴任何设备和极少数训练样本的情况下实现高精度、细粒度的手指踪迹识别。</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116503437A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
HANDLING RECORD CARRIERS
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title RFID finger trace identification method and device based on small sample learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A27%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LI%20SIJIE&rft.date=2023-07-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116503437A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true