RFID finger trace identification method and device based on small sample learning
The invention discloses an RFID finger trace identification method based on small sample learning, and the method comprises the steps: firstly obtaining an original finger reflection signal which is transmitted by a tag array and has a time sequence characteristic; secondly, performing feature extra...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LI SIJIE QIAN WEIHUA ZENG WENHUA LIN FAN YU BO YANG LYUQING LIAO MINGHONG |
description | The invention discloses an RFID finger trace identification method based on small sample learning, and the method comprises the steps: firstly obtaining an original finger reflection signal which is transmitted by a tag array and has a time sequence characteristic; secondly, performing feature extraction on the original finger reflection signal to obtain a visual finger trace space feature map; and finally, constructing a trace identification model, and inputting the finger trace space feature map into the trace identification model so as to complete identification of the finger trace space feature map. Therefore, high-precision and fine-grained finger trace identification can be realized under the condition that a human body does not need to wear any equipment and extremely few training samples.
本发明公开了一种基于小样本学习的RFID手指踪迹识别方法,首先,获取标签阵列发送的带有时序性特征的原始手指反射信号;接着,对原始手指反射信号进行特征提取,以得到可视化的手指踪迹空间特征图;最后,构建踪迹识别模型,并将手指踪迹空间特征图输入到踪迹识别模型,以便完成对手指踪迹空间特征图的识别;由此,能够在无需人体佩戴任何设备和极少数训练样本的情况下实现高精度、细粒度的手指踪迹识别。 |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116503437A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116503437A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116503437A3</originalsourceid><addsrcrecordid>eNqNjTsKAjEURaexEHUPzwUIDvFTy-igjaDYD8_JjT7IjyS4flO4AKtT3MM90-Z27y9HMuJfSFQSjyDR8EWMjFwkeHIo76CJvSaNj1ThyRma6pQdW0uZXbQgC06-_sybiWGbsfhx1iz706M7rxDDgBxrwqMM3bVtd9u12qj9Qf3jfAFtUjb4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>RFID finger trace identification method and device based on small sample learning</title><source>esp@cenet</source><creator>LI SIJIE ; QIAN WEIHUA ; ZENG WENHUA ; LIN FAN ; YU BO ; YANG LYUQING ; LIAO MINGHONG</creator><creatorcontrib>LI SIJIE ; QIAN WEIHUA ; ZENG WENHUA ; LIN FAN ; YU BO ; YANG LYUQING ; LIAO MINGHONG</creatorcontrib><description>The invention discloses an RFID finger trace identification method based on small sample learning, and the method comprises the steps: firstly obtaining an original finger reflection signal which is transmitted by a tag array and has a time sequence characteristic; secondly, performing feature extraction on the original finger reflection signal to obtain a visual finger trace space feature map; and finally, constructing a trace identification model, and inputting the finger trace space feature map into the trace identification model so as to complete identification of the finger trace space feature map. Therefore, high-precision and fine-grained finger trace identification can be realized under the condition that a human body does not need to wear any equipment and extremely few training samples.
本发明公开了一种基于小样本学习的RFID手指踪迹识别方法,首先,获取标签阵列发送的带有时序性特征的原始手指反射信号;接着,对原始手指反射信号进行特征提取,以得到可视化的手指踪迹空间特征图;最后,构建踪迹识别模型,并将手指踪迹空间特征图输入到踪迹识别模型,以便完成对手指踪迹空间特征图的识别;由此,能够在无需人体佩戴任何设备和极少数训练样本的情况下实现高精度、细粒度的手指踪迹识别。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230728&DB=EPODOC&CC=CN&NR=116503437A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230728&DB=EPODOC&CC=CN&NR=116503437A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LI SIJIE</creatorcontrib><creatorcontrib>QIAN WEIHUA</creatorcontrib><creatorcontrib>ZENG WENHUA</creatorcontrib><creatorcontrib>LIN FAN</creatorcontrib><creatorcontrib>YU BO</creatorcontrib><creatorcontrib>YANG LYUQING</creatorcontrib><creatorcontrib>LIAO MINGHONG</creatorcontrib><title>RFID finger trace identification method and device based on small sample learning</title><description>The invention discloses an RFID finger trace identification method based on small sample learning, and the method comprises the steps: firstly obtaining an original finger reflection signal which is transmitted by a tag array and has a time sequence characteristic; secondly, performing feature extraction on the original finger reflection signal to obtain a visual finger trace space feature map; and finally, constructing a trace identification model, and inputting the finger trace space feature map into the trace identification model so as to complete identification of the finger trace space feature map. Therefore, high-precision and fine-grained finger trace identification can be realized under the condition that a human body does not need to wear any equipment and extremely few training samples.
本发明公开了一种基于小样本学习的RFID手指踪迹识别方法,首先,获取标签阵列发送的带有时序性特征的原始手指反射信号;接着,对原始手指反射信号进行特征提取,以得到可视化的手指踪迹空间特征图;最后,构建踪迹识别模型,并将手指踪迹空间特征图输入到踪迹识别模型,以便完成对手指踪迹空间特征图的识别;由此,能够在无需人体佩戴任何设备和极少数训练样本的情况下实现高精度、细粒度的手指踪迹识别。</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjTsKAjEURaexEHUPzwUIDvFTy-igjaDYD8_JjT7IjyS4flO4AKtT3MM90-Z27y9HMuJfSFQSjyDR8EWMjFwkeHIo76CJvSaNj1ThyRma6pQdW0uZXbQgC06-_sybiWGbsfhx1iz706M7rxDDgBxrwqMM3bVtd9u12qj9Qf3jfAFtUjb4</recordid><startdate>20230728</startdate><enddate>20230728</enddate><creator>LI SIJIE</creator><creator>QIAN WEIHUA</creator><creator>ZENG WENHUA</creator><creator>LIN FAN</creator><creator>YU BO</creator><creator>YANG LYUQING</creator><creator>LIAO MINGHONG</creator><scope>EVB</scope></search><sort><creationdate>20230728</creationdate><title>RFID finger trace identification method and device based on small sample learning</title><author>LI SIJIE ; QIAN WEIHUA ; ZENG WENHUA ; LIN FAN ; YU BO ; YANG LYUQING ; LIAO MINGHONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116503437A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>LI SIJIE</creatorcontrib><creatorcontrib>QIAN WEIHUA</creatorcontrib><creatorcontrib>ZENG WENHUA</creatorcontrib><creatorcontrib>LIN FAN</creatorcontrib><creatorcontrib>YU BO</creatorcontrib><creatorcontrib>YANG LYUQING</creatorcontrib><creatorcontrib>LIAO MINGHONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LI SIJIE</au><au>QIAN WEIHUA</au><au>ZENG WENHUA</au><au>LIN FAN</au><au>YU BO</au><au>YANG LYUQING</au><au>LIAO MINGHONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>RFID finger trace identification method and device based on small sample learning</title><date>2023-07-28</date><risdate>2023</risdate><abstract>The invention discloses an RFID finger trace identification method based on small sample learning, and the method comprises the steps: firstly obtaining an original finger reflection signal which is transmitted by a tag array and has a time sequence characteristic; secondly, performing feature extraction on the original finger reflection signal to obtain a visual finger trace space feature map; and finally, constructing a trace identification model, and inputting the finger trace space feature map into the trace identification model so as to complete identification of the finger trace space feature map. Therefore, high-precision and fine-grained finger trace identification can be realized under the condition that a human body does not need to wear any equipment and extremely few training samples.
本发明公开了一种基于小样本学习的RFID手指踪迹识别方法,首先,获取标签阵列发送的带有时序性特征的原始手指反射信号;接着,对原始手指反射信号进行特征提取,以得到可视化的手指踪迹空间特征图;最后,构建踪迹识别模型,并将手指踪迹空间特征图输入到踪迹识别模型,以便完成对手指踪迹空间特征图的识别;由此,能够在无需人体佩戴任何设备和极少数训练样本的情况下实现高精度、细粒度的手指踪迹识别。</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN116503437A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING HANDLING RECORD CARRIERS IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | RFID finger trace identification method and device based on small sample learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A27%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LI%20SIJIE&rft.date=2023-07-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116503437A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |