Automatic driving vehicle path planning method based on improved artificial potential field method
The invention relates to an automatic driving vehicle path planning algorithm, in particular to a path planning algorithm based on an improved artificial potential field method, which comprises the following steps of: 1, identifying obstacles and surrounding environment information; 2, planning a pa...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | YANG WEI MAO HONGYE LI YONGYI |
description | The invention relates to an automatic driving vehicle path planning algorithm, in particular to a path planning algorithm based on an improved artificial potential field method, which comprises the following steps of: 1, identifying obstacles and surrounding environment information; 2, planning a path by using an improved artificial potential field method according to obstacle and road environment information acquired by a sensor; a third step of integrating an invasive weed algorithm to solve a problem of falling into a local optimal solution; the improved artificial potential field method is used for path planning, the invasive weed algorithm is introduced, the search efficiency of the algorithm is effectively improved, the planned path is smoother, the vehicle collision possibility is further reduced, and the vehicle driving safety is improved.
本发明涉及一种自动驾驶车辆路径规划算法,具体涉及一种基于改进人工势场法的路径规划算法,第一步,识别障碍物和周边环境信息。第二步,根据传感器获取的障碍与道路环境信息,使用改进人工势场法规划路径;第三步,融入入侵杂草算法解决陷入局部最优解问题;本发明使用改进人工势场法进行路径规划,引入入侵杂草算法,有效提高算法的搜索效率,且规划路 |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116501030A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116501030A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116501030A3</originalsourceid><addsrcrecordid>eNqNi0EKwjAQRbNxIeodxgMIKUX3pVRcuXJfpsnUDKSZ0Iw9vxZ6AFfv8fh_b4bmozKhsgM_88LpDQsFdpEgowbIEVNa60QaxMOAhTxIAp7yLMvPcVYe2TFGyKKUdLWRKfrtczS7EWOh08aDOd-7V_u4UJaeSkZHibRvn1V1u9rK1rap_9l8AYgyPlk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Automatic driving vehicle path planning method based on improved artificial potential field method</title><source>esp@cenet</source><creator>YANG WEI ; MAO HONGYE ; LI YONGYI</creator><creatorcontrib>YANG WEI ; MAO HONGYE ; LI YONGYI</creatorcontrib><description>The invention relates to an automatic driving vehicle path planning algorithm, in particular to a path planning algorithm based on an improved artificial potential field method, which comprises the following steps of: 1, identifying obstacles and surrounding environment information; 2, planning a path by using an improved artificial potential field method according to obstacle and road environment information acquired by a sensor; a third step of integrating an invasive weed algorithm to solve a problem of falling into a local optimal solution; the improved artificial potential field method is used for path planning, the invasive weed algorithm is introduced, the search efficiency of the algorithm is effectively improved, the planned path is smoother, the vehicle collision possibility is further reduced, and the vehicle driving safety is improved.
本发明涉及一种自动驾驶车辆路径规划算法,具体涉及一种基于改进人工势场法的路径规划算法,第一步,识别障碍物和周边环境信息。第二步,根据传感器获取的障碍与道路环境信息,使用改进人工势场法规划路径;第三步,融入入侵杂草算法解决陷入局部最优解问题;本发明使用改进人工势场法进行路径规划,引入入侵杂草算法,有效提高算法的搜索效率,且规划路</description><language>chi ; eng</language><subject>CONTROLLING ; PHYSICS ; REGULATING ; SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230728&DB=EPODOC&CC=CN&NR=116501030A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230728&DB=EPODOC&CC=CN&NR=116501030A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YANG WEI</creatorcontrib><creatorcontrib>MAO HONGYE</creatorcontrib><creatorcontrib>LI YONGYI</creatorcontrib><title>Automatic driving vehicle path planning method based on improved artificial potential field method</title><description>The invention relates to an automatic driving vehicle path planning algorithm, in particular to a path planning algorithm based on an improved artificial potential field method, which comprises the following steps of: 1, identifying obstacles and surrounding environment information; 2, planning a path by using an improved artificial potential field method according to obstacle and road environment information acquired by a sensor; a third step of integrating an invasive weed algorithm to solve a problem of falling into a local optimal solution; the improved artificial potential field method is used for path planning, the invasive weed algorithm is introduced, the search efficiency of the algorithm is effectively improved, the planned path is smoother, the vehicle collision possibility is further reduced, and the vehicle driving safety is improved.
本发明涉及一种自动驾驶车辆路径规划算法,具体涉及一种基于改进人工势场法的路径规划算法,第一步,识别障碍物和周边环境信息。第二步,根据传感器获取的障碍与道路环境信息,使用改进人工势场法规划路径;第三步,融入入侵杂草算法解决陷入局部最优解问题;本发明使用改进人工势场法进行路径规划,引入入侵杂草算法,有效提高算法的搜索效率,且规划路</description><subject>CONTROLLING</subject><subject>PHYSICS</subject><subject>REGULATING</subject><subject>SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi0EKwjAQRbNxIeodxgMIKUX3pVRcuXJfpsnUDKSZ0Iw9vxZ6AFfv8fh_b4bmozKhsgM_88LpDQsFdpEgowbIEVNa60QaxMOAhTxIAp7yLMvPcVYe2TFGyKKUdLWRKfrtczS7EWOh08aDOd-7V_u4UJaeSkZHibRvn1V1u9rK1rap_9l8AYgyPlk</recordid><startdate>20230728</startdate><enddate>20230728</enddate><creator>YANG WEI</creator><creator>MAO HONGYE</creator><creator>LI YONGYI</creator><scope>EVB</scope></search><sort><creationdate>20230728</creationdate><title>Automatic driving vehicle path planning method based on improved artificial potential field method</title><author>YANG WEI ; MAO HONGYE ; LI YONGYI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116501030A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CONTROLLING</topic><topic>PHYSICS</topic><topic>REGULATING</topic><topic>SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES</topic><toplevel>online_resources</toplevel><creatorcontrib>YANG WEI</creatorcontrib><creatorcontrib>MAO HONGYE</creatorcontrib><creatorcontrib>LI YONGYI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YANG WEI</au><au>MAO HONGYE</au><au>LI YONGYI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Automatic driving vehicle path planning method based on improved artificial potential field method</title><date>2023-07-28</date><risdate>2023</risdate><abstract>The invention relates to an automatic driving vehicle path planning algorithm, in particular to a path planning algorithm based on an improved artificial potential field method, which comprises the following steps of: 1, identifying obstacles and surrounding environment information; 2, planning a path by using an improved artificial potential field method according to obstacle and road environment information acquired by a sensor; a third step of integrating an invasive weed algorithm to solve a problem of falling into a local optimal solution; the improved artificial potential field method is used for path planning, the invasive weed algorithm is introduced, the search efficiency of the algorithm is effectively improved, the planned path is smoother, the vehicle collision possibility is further reduced, and the vehicle driving safety is improved.
本发明涉及一种自动驾驶车辆路径规划算法,具体涉及一种基于改进人工势场法的路径规划算法,第一步,识别障碍物和周边环境信息。第二步,根据传感器获取的障碍与道路环境信息,使用改进人工势场法规划路径;第三步,融入入侵杂草算法解决陷入局部最优解问题;本发明使用改进人工势场法进行路径规划,引入入侵杂草算法,有效提高算法的搜索效率,且规划路</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN116501030A |
source | esp@cenet |
subjects | CONTROLLING PHYSICS REGULATING SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES |
title | Automatic driving vehicle path planning method based on improved artificial potential field method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A25%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YANG%20WEI&rft.date=2023-07-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116501030A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |