Image moire noise removal method based on multi-scale dynamic feature aggregation

The invention discloses an image moire noise removal method based on multi-scale dynamic feature aggregation, which comprises the following steps of: respectively constructing a residual dense block, a scale feature extraction and fusion module and a main-bypass dynamic coding module, fusing the res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WEI ZHIYU, XU RUOTAO, QIU YUNZHONG, LEI ZHENGHUA
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WEI ZHIYU
XU RUOTAO
QIU YUNZHONG
LEI ZHENGHUA
description The invention discloses an image moire noise removal method based on multi-scale dynamic feature aggregation, which comprises the following steps of: respectively constructing a residual dense block, a scale feature extraction and fusion module and a main-bypass dynamic coding module, fusing the residual dense block and the scale feature extraction and fusion module into a combined module, and performing jump connection on the combined module, the main-bypass dynamic coding module structure adopts residual connection, and the combination module and the main-bypass dynamic coding module are coupled according to a preset mode to form a deep convolutional neural network. The beneficial effects of the invention are that the multi-scale feature extraction and fusion module is provided for solving the problem of insufficient multi-scale feature fusion of moire noise, and the multi-scale feature extraction and fusion module is used for better utilizing the multi-scale feature information and better realizing the com
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116485666A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116485666A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116485666A3</originalsourceid><addsrcrecordid>eNqNyzEKAjEQRuE0FqLeYTzAFosabGVRtBEE-2VM_o2BJLMkWcHba-EBrF7zvbm6XSI7UBSfQUl8AWVEeXGgiPoUSw8usCSJ4hSqb4rhALLvxNEbGsB1-p7sXIbj6iUt1WzgULD6daHWp-O9OzcYpUcZ2SCh9t21bfV2v9NaHzb_mA_Frze3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Image moire noise removal method based on multi-scale dynamic feature aggregation</title><source>esp@cenet</source><creator>WEI ZHIYU ; XU RUOTAO ; QIU YUNZHONG ; LEI ZHENGHUA</creator><creatorcontrib>WEI ZHIYU ; XU RUOTAO ; QIU YUNZHONG ; LEI ZHENGHUA</creatorcontrib><description>The invention discloses an image moire noise removal method based on multi-scale dynamic feature aggregation, which comprises the following steps of: respectively constructing a residual dense block, a scale feature extraction and fusion module and a main-bypass dynamic coding module, fusing the residual dense block and the scale feature extraction and fusion module into a combined module, and performing jump connection on the combined module, the main-bypass dynamic coding module structure adopts residual connection, and the combination module and the main-bypass dynamic coding module are coupled according to a preset mode to form a deep convolutional neural network. The beneficial effects of the invention are that the multi-scale feature extraction and fusion module is provided for solving the problem of insufficient multi-scale feature fusion of moire noise, and the multi-scale feature extraction and fusion module is used for better utilizing the multi-scale feature information and better realizing the com</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230725&amp;DB=EPODOC&amp;CC=CN&amp;NR=116485666A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25566,76549</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230725&amp;DB=EPODOC&amp;CC=CN&amp;NR=116485666A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WEI ZHIYU</creatorcontrib><creatorcontrib>XU RUOTAO</creatorcontrib><creatorcontrib>QIU YUNZHONG</creatorcontrib><creatorcontrib>LEI ZHENGHUA</creatorcontrib><title>Image moire noise removal method based on multi-scale dynamic feature aggregation</title><description>The invention discloses an image moire noise removal method based on multi-scale dynamic feature aggregation, which comprises the following steps of: respectively constructing a residual dense block, a scale feature extraction and fusion module and a main-bypass dynamic coding module, fusing the residual dense block and the scale feature extraction and fusion module into a combined module, and performing jump connection on the combined module, the main-bypass dynamic coding module structure adopts residual connection, and the combination module and the main-bypass dynamic coding module are coupled according to a preset mode to form a deep convolutional neural network. The beneficial effects of the invention are that the multi-scale feature extraction and fusion module is provided for solving the problem of insufficient multi-scale feature fusion of moire noise, and the multi-scale feature extraction and fusion module is used for better utilizing the multi-scale feature information and better realizing the com</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyzEKAjEQRuE0FqLeYTzAFosabGVRtBEE-2VM_o2BJLMkWcHba-EBrF7zvbm6XSI7UBSfQUl8AWVEeXGgiPoUSw8usCSJ4hSqb4rhALLvxNEbGsB1-p7sXIbj6iUt1WzgULD6daHWp-O9OzcYpUcZ2SCh9t21bfV2v9NaHzb_mA_Frze3</recordid><startdate>20230725</startdate><enddate>20230725</enddate><creator>WEI ZHIYU</creator><creator>XU RUOTAO</creator><creator>QIU YUNZHONG</creator><creator>LEI ZHENGHUA</creator><scope>EVB</scope></search><sort><creationdate>20230725</creationdate><title>Image moire noise removal method based on multi-scale dynamic feature aggregation</title><author>WEI ZHIYU ; XU RUOTAO ; QIU YUNZHONG ; LEI ZHENGHUA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116485666A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>WEI ZHIYU</creatorcontrib><creatorcontrib>XU RUOTAO</creatorcontrib><creatorcontrib>QIU YUNZHONG</creatorcontrib><creatorcontrib>LEI ZHENGHUA</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WEI ZHIYU</au><au>XU RUOTAO</au><au>QIU YUNZHONG</au><au>LEI ZHENGHUA</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Image moire noise removal method based on multi-scale dynamic feature aggregation</title><date>2023-07-25</date><risdate>2023</risdate><abstract>The invention discloses an image moire noise removal method based on multi-scale dynamic feature aggregation, which comprises the following steps of: respectively constructing a residual dense block, a scale feature extraction and fusion module and a main-bypass dynamic coding module, fusing the residual dense block and the scale feature extraction and fusion module into a combined module, and performing jump connection on the combined module, the main-bypass dynamic coding module structure adopts residual connection, and the combination module and the main-bypass dynamic coding module are coupled according to a preset mode to form a deep convolutional neural network. The beneficial effects of the invention are that the multi-scale feature extraction and fusion module is provided for solving the problem of insufficient multi-scale feature fusion of moire noise, and the multi-scale feature extraction and fusion module is used for better utilizing the multi-scale feature information and better realizing the com</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116485666A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Image moire noise removal method based on multi-scale dynamic feature aggregation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T08%3A41%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WEI%20ZHIYU&rft.date=2023-07-25&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116485666A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true