Multi-modal named entity recognition method and device, equipment and storage medium

The invention relates to the technical field of natural language processing, in particular to a multi-modal named entity recognition method, which comprises the following steps: obtaining document data and a preset multi-modal named entity recognition model, inputting a sentence into a text feature...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: HU JIAPEI, XUE YUN, LYU YIFAN, LIANG ZHUOMING
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator HU JIAPEI
XUE YUN
LYU YIFAN
LIANG ZHUOMING
description The invention relates to the technical field of natural language processing, in particular to a multi-modal named entity recognition method, which comprises the following steps: obtaining document data and a preset multi-modal named entity recognition model, inputting a sentence into a text feature extraction module for feature extraction, and obtaining a text feature representation corresponding to the sentence; inputting the image into the visual feature extraction module for feature extraction to obtain visual feature representation corresponding to the image; inputting the visual feature representation into the visual attention extraction module for attention extraction, and obtaining the visual feature representation after attention extraction; inputting the text feature representation and the visual feature representation after attention extraction into a cross-modal interaction module for feature interaction to obtain a cross-modal feature representation; and inputting the cross-modal feature represent
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116484869A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116484869A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116484869A3</originalsourceid><addsrcrecordid>eNqNyr0KwjAUhuEsDqLew3G3Q7GUOkpRXHTqXkLyWQ_kpzYngndvES_A6YWXZ6m6a3bChY9WOwrawxKCsLxpgolDYOEYyEMe0ZIOlixebLAjPDOPfrbfmyROesAMLWe_Vou7dgmbX1dqez517aXAGHukURsESN_eyrKumqqpD8f9P-YDoYY48g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Multi-modal named entity recognition method and device, equipment and storage medium</title><source>esp@cenet</source><creator>HU JIAPEI ; XUE YUN ; LYU YIFAN ; LIANG ZHUOMING</creator><creatorcontrib>HU JIAPEI ; XUE YUN ; LYU YIFAN ; LIANG ZHUOMING</creatorcontrib><description>The invention relates to the technical field of natural language processing, in particular to a multi-modal named entity recognition method, which comprises the following steps: obtaining document data and a preset multi-modal named entity recognition model, inputting a sentence into a text feature extraction module for feature extraction, and obtaining a text feature representation corresponding to the sentence; inputting the image into the visual feature extraction module for feature extraction to obtain visual feature representation corresponding to the image; inputting the visual feature representation into the visual attention extraction module for attention extraction, and obtaining the visual feature representation after attention extraction; inputting the text feature representation and the visual feature representation after attention extraction into a cross-modal interaction module for feature interaction to obtain a cross-modal feature representation; and inputting the cross-modal feature represent</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230725&amp;DB=EPODOC&amp;CC=CN&amp;NR=116484869A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230725&amp;DB=EPODOC&amp;CC=CN&amp;NR=116484869A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HU JIAPEI</creatorcontrib><creatorcontrib>XUE YUN</creatorcontrib><creatorcontrib>LYU YIFAN</creatorcontrib><creatorcontrib>LIANG ZHUOMING</creatorcontrib><title>Multi-modal named entity recognition method and device, equipment and storage medium</title><description>The invention relates to the technical field of natural language processing, in particular to a multi-modal named entity recognition method, which comprises the following steps: obtaining document data and a preset multi-modal named entity recognition model, inputting a sentence into a text feature extraction module for feature extraction, and obtaining a text feature representation corresponding to the sentence; inputting the image into the visual feature extraction module for feature extraction to obtain visual feature representation corresponding to the image; inputting the visual feature representation into the visual attention extraction module for attention extraction, and obtaining the visual feature representation after attention extraction; inputting the text feature representation and the visual feature representation after attention extraction into a cross-modal interaction module for feature interaction to obtain a cross-modal feature representation; and inputting the cross-modal feature represent</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyr0KwjAUhuEsDqLew3G3Q7GUOkpRXHTqXkLyWQ_kpzYngndvES_A6YWXZ6m6a3bChY9WOwrawxKCsLxpgolDYOEYyEMe0ZIOlixebLAjPDOPfrbfmyROesAMLWe_Vou7dgmbX1dqez517aXAGHukURsESN_eyrKumqqpD8f9P-YDoYY48g</recordid><startdate>20230725</startdate><enddate>20230725</enddate><creator>HU JIAPEI</creator><creator>XUE YUN</creator><creator>LYU YIFAN</creator><creator>LIANG ZHUOMING</creator><scope>EVB</scope></search><sort><creationdate>20230725</creationdate><title>Multi-modal named entity recognition method and device, equipment and storage medium</title><author>HU JIAPEI ; XUE YUN ; LYU YIFAN ; LIANG ZHUOMING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116484869A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>HU JIAPEI</creatorcontrib><creatorcontrib>XUE YUN</creatorcontrib><creatorcontrib>LYU YIFAN</creatorcontrib><creatorcontrib>LIANG ZHUOMING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HU JIAPEI</au><au>XUE YUN</au><au>LYU YIFAN</au><au>LIANG ZHUOMING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Multi-modal named entity recognition method and device, equipment and storage medium</title><date>2023-07-25</date><risdate>2023</risdate><abstract>The invention relates to the technical field of natural language processing, in particular to a multi-modal named entity recognition method, which comprises the following steps: obtaining document data and a preset multi-modal named entity recognition model, inputting a sentence into a text feature extraction module for feature extraction, and obtaining a text feature representation corresponding to the sentence; inputting the image into the visual feature extraction module for feature extraction to obtain visual feature representation corresponding to the image; inputting the visual feature representation into the visual attention extraction module for attention extraction, and obtaining the visual feature representation after attention extraction; inputting the text feature representation and the visual feature representation after attention extraction into a cross-modal interaction module for feature interaction to obtain a cross-modal feature representation; and inputting the cross-modal feature represent</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116484869A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Multi-modal named entity recognition method and device, equipment and storage medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A37%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HU%20JIAPEI&rft.date=2023-07-25&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116484869A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true