Rolling bearing fault diagnosis method based on multistage abstract time feature fusion

The invention provides a rolling bearing fault diagnosis method based on multistage abstract time feature fusion, and the algorithm can extract multistage abstract features from a bearing vibration signal and fuse the multistage abstract features, and capture time dependence hidden in the signal, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHAO KAIHUI, DAI WANGKE, QIU PENGQI, HUANG GANG, ZHANG CHANGFAN, ZHOU RUIRUI, LIU WENCHANG, WU SICHENG, LI TAO
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHAO KAIHUI
DAI WANGKE
QIU PENGQI
HUANG GANG
ZHANG CHANGFAN
ZHOU RUIRUI
LIU WENCHANG
WU SICHENG
LI TAO
description The invention provides a rolling bearing fault diagnosis method based on multistage abstract time feature fusion, and the algorithm can extract multistage abstract features from a bearing vibration signal and fuse the multistage abstract features, and capture time dependence hidden in the signal, thereby overcoming the defect that most methods at present are not comprehensive enough in feature extraction, and improving the fault diagnosis accuracy. Dependence on fault diagnosis priori knowledge in a feature extraction stage is eliminated, and generalization ability of the fault diagnosis method is improved. According to the fault diagnosis method, the fault damage degree of the bearing can be accurately identified and accurately positioned, good load adaptability and anti-interference capability are achieved, and bearing fault diagnosis can still be effectively carried out under the scenes of variable loads and strong noise interference. 本发明提出了一种基于多级抽象时间特征融合的滚动轴承故障诊断方法,所提出的算法能够从轴承振动信号中提取多级抽象特征并融合,同时捕捉隐藏在信号中的时
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116484513A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116484513A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116484513A3</originalsourceid><addsrcrecordid>eNqNyr8KwjAQgPEsDqK-w_kADqFVXKUoTg4iOJZLc00D-VNyl_e3gg_g9Bu-b63ezxyCTw4MYfk6Yg0C1qNLmT1DJJmyBYNMFnKCuGTPgo4ADUvBQUB8JBgJpZbFyj6nrVqNGJh2Pzdqf7u-uvuB5twTzzhQIum7h9an9twedXNp_nk-iLQ6Sw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Rolling bearing fault diagnosis method based on multistage abstract time feature fusion</title><source>esp@cenet</source><creator>ZHAO KAIHUI ; DAI WANGKE ; QIU PENGQI ; HUANG GANG ; ZHANG CHANGFAN ; ZHOU RUIRUI ; LIU WENCHANG ; WU SICHENG ; LI TAO</creator><creatorcontrib>ZHAO KAIHUI ; DAI WANGKE ; QIU PENGQI ; HUANG GANG ; ZHANG CHANGFAN ; ZHOU RUIRUI ; LIU WENCHANG ; WU SICHENG ; LI TAO</creatorcontrib><description>The invention provides a rolling bearing fault diagnosis method based on multistage abstract time feature fusion, and the algorithm can extract multistage abstract features from a bearing vibration signal and fuse the multistage abstract features, and capture time dependence hidden in the signal, thereby overcoming the defect that most methods at present are not comprehensive enough in feature extraction, and improving the fault diagnosis accuracy. Dependence on fault diagnosis priori knowledge in a feature extraction stage is eliminated, and generalization ability of the fault diagnosis method is improved. According to the fault diagnosis method, the fault damage degree of the bearing can be accurately identified and accurately positioned, good load adaptability and anti-interference capability are achieved, and bearing fault diagnosis can still be effectively carried out under the scenes of variable loads and strong noise interference. 本发明提出了一种基于多级抽象时间特征融合的滚动轴承故障诊断方法,所提出的算法能够从轴承振动信号中提取多级抽象特征并融合,同时捕捉隐藏在信号中的时</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; MEASURING ; PHYSICS ; TESTING ; TESTING STATIC OR DYNAMIC BALANCE OF MACHINES ORSTRUCTURES ; TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230725&amp;DB=EPODOC&amp;CC=CN&amp;NR=116484513A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230725&amp;DB=EPODOC&amp;CC=CN&amp;NR=116484513A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHAO KAIHUI</creatorcontrib><creatorcontrib>DAI WANGKE</creatorcontrib><creatorcontrib>QIU PENGQI</creatorcontrib><creatorcontrib>HUANG GANG</creatorcontrib><creatorcontrib>ZHANG CHANGFAN</creatorcontrib><creatorcontrib>ZHOU RUIRUI</creatorcontrib><creatorcontrib>LIU WENCHANG</creatorcontrib><creatorcontrib>WU SICHENG</creatorcontrib><creatorcontrib>LI TAO</creatorcontrib><title>Rolling bearing fault diagnosis method based on multistage abstract time feature fusion</title><description>The invention provides a rolling bearing fault diagnosis method based on multistage abstract time feature fusion, and the algorithm can extract multistage abstract features from a bearing vibration signal and fuse the multistage abstract features, and capture time dependence hidden in the signal, thereby overcoming the defect that most methods at present are not comprehensive enough in feature extraction, and improving the fault diagnosis accuracy. Dependence on fault diagnosis priori knowledge in a feature extraction stage is eliminated, and generalization ability of the fault diagnosis method is improved. According to the fault diagnosis method, the fault damage degree of the bearing can be accurately identified and accurately positioned, good load adaptability and anti-interference capability are achieved, and bearing fault diagnosis can still be effectively carried out under the scenes of variable loads and strong noise interference. 本发明提出了一种基于多级抽象时间特征融合的滚动轴承故障诊断方法,所提出的算法能够从轴承振动信号中提取多级抽象特征并融合,同时捕捉隐藏在信号中的时</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>TESTING</subject><subject>TESTING STATIC OR DYNAMIC BALANCE OF MACHINES ORSTRUCTURES</subject><subject>TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyr8KwjAQgPEsDqK-w_kADqFVXKUoTg4iOJZLc00D-VNyl_e3gg_g9Bu-b63ezxyCTw4MYfk6Yg0C1qNLmT1DJJmyBYNMFnKCuGTPgo4ADUvBQUB8JBgJpZbFyj6nrVqNGJh2Pzdqf7u-uvuB5twTzzhQIum7h9an9twedXNp_nk-iLQ6Sw</recordid><startdate>20230725</startdate><enddate>20230725</enddate><creator>ZHAO KAIHUI</creator><creator>DAI WANGKE</creator><creator>QIU PENGQI</creator><creator>HUANG GANG</creator><creator>ZHANG CHANGFAN</creator><creator>ZHOU RUIRUI</creator><creator>LIU WENCHANG</creator><creator>WU SICHENG</creator><creator>LI TAO</creator><scope>EVB</scope></search><sort><creationdate>20230725</creationdate><title>Rolling bearing fault diagnosis method based on multistage abstract time feature fusion</title><author>ZHAO KAIHUI ; DAI WANGKE ; QIU PENGQI ; HUANG GANG ; ZHANG CHANGFAN ; ZHOU RUIRUI ; LIU WENCHANG ; WU SICHENG ; LI TAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116484513A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>TESTING</topic><topic>TESTING STATIC OR DYNAMIC BALANCE OF MACHINES ORSTRUCTURES</topic><topic>TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHAO KAIHUI</creatorcontrib><creatorcontrib>DAI WANGKE</creatorcontrib><creatorcontrib>QIU PENGQI</creatorcontrib><creatorcontrib>HUANG GANG</creatorcontrib><creatorcontrib>ZHANG CHANGFAN</creatorcontrib><creatorcontrib>ZHOU RUIRUI</creatorcontrib><creatorcontrib>LIU WENCHANG</creatorcontrib><creatorcontrib>WU SICHENG</creatorcontrib><creatorcontrib>LI TAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHAO KAIHUI</au><au>DAI WANGKE</au><au>QIU PENGQI</au><au>HUANG GANG</au><au>ZHANG CHANGFAN</au><au>ZHOU RUIRUI</au><au>LIU WENCHANG</au><au>WU SICHENG</au><au>LI TAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Rolling bearing fault diagnosis method based on multistage abstract time feature fusion</title><date>2023-07-25</date><risdate>2023</risdate><abstract>The invention provides a rolling bearing fault diagnosis method based on multistage abstract time feature fusion, and the algorithm can extract multistage abstract features from a bearing vibration signal and fuse the multistage abstract features, and capture time dependence hidden in the signal, thereby overcoming the defect that most methods at present are not comprehensive enough in feature extraction, and improving the fault diagnosis accuracy. Dependence on fault diagnosis priori knowledge in a feature extraction stage is eliminated, and generalization ability of the fault diagnosis method is improved. According to the fault diagnosis method, the fault damage degree of the bearing can be accurately identified and accurately positioned, good load adaptability and anti-interference capability are achieved, and bearing fault diagnosis can still be effectively carried out under the scenes of variable loads and strong noise interference. 本发明提出了一种基于多级抽象时间特征融合的滚动轴承故障诊断方法,所提出的算法能够从轴承振动信号中提取多级抽象特征并融合,同时捕捉隐藏在信号中的时</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116484513A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
MEASURING
PHYSICS
TESTING
TESTING STATIC OR DYNAMIC BALANCE OF MACHINES ORSTRUCTURES
TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR
title Rolling bearing fault diagnosis method based on multistage abstract time feature fusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A46%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHAO%20KAIHUI&rft.date=2023-07-25&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116484513A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true