Microblog water army identification method based on multi-task learning
The invention discloses a microblog water army identification method based on multi-task learning. The method comprises the following steps: S1, carrying out data preprocessing on a user attention quantity, a fan quantity, gender, a microblog grade, whether authentication is carried out or not, an a...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | REN JIE YANG JIANFENG HE HOUWEI GAO LING YU BINQUAN |
description | The invention discloses a microblog water army identification method based on multi-task learning. The method comprises the following steps: S1, carrying out data preprocessing on a user attention quantity, a fan quantity, gender, a microblog grade, whether authentication is carried out or not, an authentication category, sunshine credit, a member category, a member grade and a blog article content, and dividing tasks into t1, t2,... and t5 according to user authentication categories; sorting pi belongs to delta5, delta5 is a symmetric group of all arrangements on five elements, training a classifier for each task by using an SVM (Support Vector Machine) model, and calculating a weight corresponding to each task in the sorting pi; s2, traversing each pi in delta 5 by solving the average error research sequence pi, determining pi (i) by minimizing the upper limit of a corresponding item of a task which is not solved, and determining an optimal learning sequence; and S3, according to the optimal learning sequen |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116484087A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116484087A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116484087A3</originalsourceid><addsrcrecordid>eNrjZHD3zUwuyk_KyU9XKE8sSS1SSCzKrVTITEnNK8lMy0xOLMnMz1PITS3JyE9RSEosTk1RAPFLc0oydUsSi7MVclITi_Iy89J5GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFicmpeakm8s5-hoZmJhYmBhbmjMTFqAItGNDg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Microblog water army identification method based on multi-task learning</title><source>esp@cenet</source><creator>REN JIE ; YANG JIANFENG ; HE HOUWEI ; GAO LING ; YU BINQUAN</creator><creatorcontrib>REN JIE ; YANG JIANFENG ; HE HOUWEI ; GAO LING ; YU BINQUAN</creatorcontrib><description>The invention discloses a microblog water army identification method based on multi-task learning. The method comprises the following steps: S1, carrying out data preprocessing on a user attention quantity, a fan quantity, gender, a microblog grade, whether authentication is carried out or not, an authentication category, sunshine credit, a member category, a member grade and a blog article content, and dividing tasks into t1, t2,... and t5 according to user authentication categories; sorting pi belongs to delta5, delta5 is a symmetric group of all arrangements on five elements, training a classifier for each task by using an SVM (Support Vector Machine) model, and calculating a weight corresponding to each task in the sorting pi; s2, traversing each pi in delta 5 by solving the average error research sequence pi, determining pi (i) by minimizing the upper limit of a corresponding item of a task which is not solved, and determining an optimal learning sequence; and S3, according to the optimal learning sequen</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230725&DB=EPODOC&CC=CN&NR=116484087A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76418</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230725&DB=EPODOC&CC=CN&NR=116484087A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>REN JIE</creatorcontrib><creatorcontrib>YANG JIANFENG</creatorcontrib><creatorcontrib>HE HOUWEI</creatorcontrib><creatorcontrib>GAO LING</creatorcontrib><creatorcontrib>YU BINQUAN</creatorcontrib><title>Microblog water army identification method based on multi-task learning</title><description>The invention discloses a microblog water army identification method based on multi-task learning. The method comprises the following steps: S1, carrying out data preprocessing on a user attention quantity, a fan quantity, gender, a microblog grade, whether authentication is carried out or not, an authentication category, sunshine credit, a member category, a member grade and a blog article content, and dividing tasks into t1, t2,... and t5 according to user authentication categories; sorting pi belongs to delta5, delta5 is a symmetric group of all arrangements on five elements, training a classifier for each task by using an SVM (Support Vector Machine) model, and calculating a weight corresponding to each task in the sorting pi; s2, traversing each pi in delta 5 by solving the average error research sequence pi, determining pi (i) by minimizing the upper limit of a corresponding item of a task which is not solved, and determining an optimal learning sequence; and S3, according to the optimal learning sequen</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHD3zUwuyk_KyU9XKE8sSS1SSCzKrVTITEnNK8lMy0xOLMnMz1PITS3JyE9RSEosTk1RAPFLc0oydUsSi7MVclITi_Iy89J5GFjTEnOKU3mhNDeDoptriLOHbmpBfnxqcUFicmpeakm8s5-hoZmJhYmBhbmjMTFqAItGNDg</recordid><startdate>20230725</startdate><enddate>20230725</enddate><creator>REN JIE</creator><creator>YANG JIANFENG</creator><creator>HE HOUWEI</creator><creator>GAO LING</creator><creator>YU BINQUAN</creator><scope>EVB</scope></search><sort><creationdate>20230725</creationdate><title>Microblog water army identification method based on multi-task learning</title><author>REN JIE ; YANG JIANFENG ; HE HOUWEI ; GAO LING ; YU BINQUAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116484087A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>REN JIE</creatorcontrib><creatorcontrib>YANG JIANFENG</creatorcontrib><creatorcontrib>HE HOUWEI</creatorcontrib><creatorcontrib>GAO LING</creatorcontrib><creatorcontrib>YU BINQUAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>REN JIE</au><au>YANG JIANFENG</au><au>HE HOUWEI</au><au>GAO LING</au><au>YU BINQUAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Microblog water army identification method based on multi-task learning</title><date>2023-07-25</date><risdate>2023</risdate><abstract>The invention discloses a microblog water army identification method based on multi-task learning. The method comprises the following steps: S1, carrying out data preprocessing on a user attention quantity, a fan quantity, gender, a microblog grade, whether authentication is carried out or not, an authentication category, sunshine credit, a member category, a member grade and a blog article content, and dividing tasks into t1, t2,... and t5 according to user authentication categories; sorting pi belongs to delta5, delta5 is a symmetric group of all arrangements on five elements, training a classifier for each task by using an SVM (Support Vector Machine) model, and calculating a weight corresponding to each task in the sorting pi; s2, traversing each pi in delta 5 by solving the average error research sequence pi, determining pi (i) by minimizing the upper limit of a corresponding item of a task which is not solved, and determining an optimal learning sequence; and S3, according to the optimal learning sequen</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN116484087A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Microblog water army identification method based on multi-task learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A58%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=REN%20JIE&rft.date=2023-07-25&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116484087A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |