Bridge crack detection and crack three-dimensional visualization method and system

The invention discloses a bridge crack detection and crack three-dimensional visualization method and system, and belongs to the technical field of target detection. A robot is used for carrying out two-dimensional image acquisition on a bridge disease related area to obtain a target detection model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: DAI YONGBO, REN TAI'AN, ZHONG RUXIN, XIAO QIANLING, HE ZIYI, BIAN TAISHAN, CAO CHENXI, LI BUFAN, WEI TIANYI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator DAI YONGBO
REN TAI'AN
ZHONG RUXIN
XIAO QIANLING
HE ZIYI
BIAN TAISHAN
CAO CHENXI
LI BUFAN
WEI TIANYI
description The invention discloses a bridge crack detection and crack three-dimensional visualization method and system, and belongs to the technical field of target detection. A robot is used for carrying out two-dimensional image acquisition on a bridge disease related area to obtain a target detection model, and the target detection model is primarily extracted based on a YOLOv2 algorithm; target pixel-level segmentation comprises pixel-by-pixel segmentation of a target detection model based on a U-net neural network, and three-dimensional reconstruction comprises building a three-dimensional model by using a erf neural network and a multi-angle two-dimensional image, and adding the target detection model in a pixel-level segmentation stage into the three-dimensional model. According to the invention, the two-dimensional image is utilized to identify the target and establish the three-dimensional model, the target object in the two-dimensional image is marked in the three-dimensional model, the three-dimensional visu
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116468683A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116468683A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116468683A3</originalsourceid><addsrcrecordid>eNrjZAhyKspMSU9VSC5KTM5WSEktSU0uyczPU0jMS4GKlWQUpabqpmTmpuYVA2UScxTKMotLE3MyqxLBKnNTSzLyU8AaiiuLS1JzeRhY0xJzilN5oTQ3g6Kba4izh25qQX58anFBYnJqXmpJvLOfoaGZiZmFmYWxozExagAy5Dh5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Bridge crack detection and crack three-dimensional visualization method and system</title><source>esp@cenet</source><creator>DAI YONGBO ; REN TAI'AN ; ZHONG RUXIN ; XIAO QIANLING ; HE ZIYI ; BIAN TAISHAN ; CAO CHENXI ; LI BUFAN ; WEI TIANYI</creator><creatorcontrib>DAI YONGBO ; REN TAI'AN ; ZHONG RUXIN ; XIAO QIANLING ; HE ZIYI ; BIAN TAISHAN ; CAO CHENXI ; LI BUFAN ; WEI TIANYI</creatorcontrib><description>The invention discloses a bridge crack detection and crack three-dimensional visualization method and system, and belongs to the technical field of target detection. A robot is used for carrying out two-dimensional image acquisition on a bridge disease related area to obtain a target detection model, and the target detection model is primarily extracted based on a YOLOv2 algorithm; target pixel-level segmentation comprises pixel-by-pixel segmentation of a target detection model based on a U-net neural network, and three-dimensional reconstruction comprises building a three-dimensional model by using a erf neural network and a multi-angle two-dimensional image, and adding the target detection model in a pixel-level segmentation stage into the three-dimensional model. According to the invention, the two-dimensional image is utilized to identify the target and establish the three-dimensional model, the target object in the two-dimensional image is marked in the three-dimensional model, the three-dimensional visu</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES ; MEASURING ; PHYSICS ; TESTING</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230721&amp;DB=EPODOC&amp;CC=CN&amp;NR=116468683A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230721&amp;DB=EPODOC&amp;CC=CN&amp;NR=116468683A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>DAI YONGBO</creatorcontrib><creatorcontrib>REN TAI'AN</creatorcontrib><creatorcontrib>ZHONG RUXIN</creatorcontrib><creatorcontrib>XIAO QIANLING</creatorcontrib><creatorcontrib>HE ZIYI</creatorcontrib><creatorcontrib>BIAN TAISHAN</creatorcontrib><creatorcontrib>CAO CHENXI</creatorcontrib><creatorcontrib>LI BUFAN</creatorcontrib><creatorcontrib>WEI TIANYI</creatorcontrib><title>Bridge crack detection and crack three-dimensional visualization method and system</title><description>The invention discloses a bridge crack detection and crack three-dimensional visualization method and system, and belongs to the technical field of target detection. A robot is used for carrying out two-dimensional image acquisition on a bridge disease related area to obtain a target detection model, and the target detection model is primarily extracted based on a YOLOv2 algorithm; target pixel-level segmentation comprises pixel-by-pixel segmentation of a target detection model based on a U-net neural network, and three-dimensional reconstruction comprises building a three-dimensional model by using a erf neural network and a multi-angle two-dimensional image, and adding the target detection model in a pixel-level segmentation stage into the three-dimensional model. According to the invention, the two-dimensional image is utilized to identify the target and establish the three-dimensional model, the target object in the two-dimensional image is marked in the three-dimensional model, the three-dimensional visu</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZAhyKspMSU9VSC5KTM5WSEktSU0uyczPU0jMS4GKlWQUpabqpmTmpuYVA2UScxTKMotLE3MyqxLBKnNTSzLyU8AaiiuLS1JzeRhY0xJzilN5oTQ3g6Kba4izh25qQX58anFBYnJqXmpJvLOfoaGZiZmFmYWxozExagAy5Dh5</recordid><startdate>20230721</startdate><enddate>20230721</enddate><creator>DAI YONGBO</creator><creator>REN TAI'AN</creator><creator>ZHONG RUXIN</creator><creator>XIAO QIANLING</creator><creator>HE ZIYI</creator><creator>BIAN TAISHAN</creator><creator>CAO CHENXI</creator><creator>LI BUFAN</creator><creator>WEI TIANYI</creator><scope>EVB</scope></search><sort><creationdate>20230721</creationdate><title>Bridge crack detection and crack three-dimensional visualization method and system</title><author>DAI YONGBO ; REN TAI'AN ; ZHONG RUXIN ; XIAO QIANLING ; HE ZIYI ; BIAN TAISHAN ; CAO CHENXI ; LI BUFAN ; WEI TIANYI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116468683A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>DAI YONGBO</creatorcontrib><creatorcontrib>REN TAI'AN</creatorcontrib><creatorcontrib>ZHONG RUXIN</creatorcontrib><creatorcontrib>XIAO QIANLING</creatorcontrib><creatorcontrib>HE ZIYI</creatorcontrib><creatorcontrib>BIAN TAISHAN</creatorcontrib><creatorcontrib>CAO CHENXI</creatorcontrib><creatorcontrib>LI BUFAN</creatorcontrib><creatorcontrib>WEI TIANYI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>DAI YONGBO</au><au>REN TAI'AN</au><au>ZHONG RUXIN</au><au>XIAO QIANLING</au><au>HE ZIYI</au><au>BIAN TAISHAN</au><au>CAO CHENXI</au><au>LI BUFAN</au><au>WEI TIANYI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Bridge crack detection and crack three-dimensional visualization method and system</title><date>2023-07-21</date><risdate>2023</risdate><abstract>The invention discloses a bridge crack detection and crack three-dimensional visualization method and system, and belongs to the technical field of target detection. A robot is used for carrying out two-dimensional image acquisition on a bridge disease related area to obtain a target detection model, and the target detection model is primarily extracted based on a YOLOv2 algorithm; target pixel-level segmentation comprises pixel-by-pixel segmentation of a target detection model based on a U-net neural network, and three-dimensional reconstruction comprises building a three-dimensional model by using a erf neural network and a multi-angle two-dimensional image, and adding the target detection model in a pixel-level segmentation stage into the three-dimensional model. According to the invention, the two-dimensional image is utilized to identify the target and establish the three-dimensional model, the target object in the two-dimensional image is marked in the three-dimensional model, the three-dimensional visu</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116468683A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES
MEASURING
PHYSICS
TESTING
title Bridge crack detection and crack three-dimensional visualization method and system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A12%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=DAI%20YONGBO&rft.date=2023-07-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116468683A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true