Weak light image enhancement method based on multi-branch progressive deep network

The invention discloses a multi-branch progressive weak light image enhancement method. The method comprises the following steps: step 1, preparing data; step 2, building a multi-branch progressive enhancement model; 3, training the data prepared in the step 1 according to the structure built in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: YU YOUJIANG, YUAN CHENG, CHEN XIAOGAI, LI MINQI, ZHANG KAIBING, LU JIAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator YU YOUJIANG
YUAN CHENG
CHEN XIAOGAI
LI MINQI
ZHANG KAIBING
LU JIAN
description The invention discloses a multi-branch progressive weak light image enhancement method. The method comprises the following steps: step 1, preparing data; step 2, building a multi-branch progressive enhancement model; 3, training the data prepared in the step 1 according to the structure built in the step 2 to obtain a trained multi-branch progressive enhancement model; and 4, performing data testing based on the trained multi-branch progressive enhancement model obtained in the step 3. According to the method, the problem of low-light image degradation is solved through the multi-branch enhancement networks with different scales. 本发明公开了一种基于多分支渐进式的弱光图像增强方法,包括如下步骤:步骤1,准备数据;步骤2,搭建多分支渐进式增强模型;步骤3,根据步骤2搭建的结构对步骤1准备的数据进行训练,得到训练好的多分支渐进式增强模型;步骤4,基于步骤3得到的训练好的多分支渐进式增强模型进行数据测试。本发明通过不同尺度的多分支增强网络克服了弱光图像退化问题。
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116452431A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116452431A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116452431A3</originalsourceid><addsrcrecordid>eNqNyjsOwjAQBcA0FAi4w3KAFCaBHkUgKgqERBlt4odtxT_ZBq5PCg5ANc0sq9sDPJE1ShcyjhUIXrMf4eALORQdJA2cISl4ci9bTD2kOWiKKaiEnM0bJIFIHuUT0rSuFk-2GZufq2p7Pt27S40YeuTII-bZd1chDu1-1zbi2PxzvhGNOBw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Weak light image enhancement method based on multi-branch progressive deep network</title><source>esp@cenet</source><creator>YU YOUJIANG ; YUAN CHENG ; CHEN XIAOGAI ; LI MINQI ; ZHANG KAIBING ; LU JIAN</creator><creatorcontrib>YU YOUJIANG ; YUAN CHENG ; CHEN XIAOGAI ; LI MINQI ; ZHANG KAIBING ; LU JIAN</creatorcontrib><description>The invention discloses a multi-branch progressive weak light image enhancement method. The method comprises the following steps: step 1, preparing data; step 2, building a multi-branch progressive enhancement model; 3, training the data prepared in the step 1 according to the structure built in the step 2 to obtain a trained multi-branch progressive enhancement model; and 4, performing data testing based on the trained multi-branch progressive enhancement model obtained in the step 3. According to the method, the problem of low-light image degradation is solved through the multi-branch enhancement networks with different scales. 本发明公开了一种基于多分支渐进式的弱光图像增强方法,包括如下步骤:步骤1,准备数据;步骤2,搭建多分支渐进式增强模型;步骤3,根据步骤2搭建的结构对步骤1准备的数据进行训练,得到训练好的多分支渐进式增强模型;步骤4,基于步骤3得到的训练好的多分支渐进式增强模型进行数据测试。本发明通过不同尺度的多分支增强网络克服了弱光图像退化问题。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230718&amp;DB=EPODOC&amp;CC=CN&amp;NR=116452431A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25544,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230718&amp;DB=EPODOC&amp;CC=CN&amp;NR=116452431A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YU YOUJIANG</creatorcontrib><creatorcontrib>YUAN CHENG</creatorcontrib><creatorcontrib>CHEN XIAOGAI</creatorcontrib><creatorcontrib>LI MINQI</creatorcontrib><creatorcontrib>ZHANG KAIBING</creatorcontrib><creatorcontrib>LU JIAN</creatorcontrib><title>Weak light image enhancement method based on multi-branch progressive deep network</title><description>The invention discloses a multi-branch progressive weak light image enhancement method. The method comprises the following steps: step 1, preparing data; step 2, building a multi-branch progressive enhancement model; 3, training the data prepared in the step 1 according to the structure built in the step 2 to obtain a trained multi-branch progressive enhancement model; and 4, performing data testing based on the trained multi-branch progressive enhancement model obtained in the step 3. According to the method, the problem of low-light image degradation is solved through the multi-branch enhancement networks with different scales. 本发明公开了一种基于多分支渐进式的弱光图像增强方法,包括如下步骤:步骤1,准备数据;步骤2,搭建多分支渐进式增强模型;步骤3,根据步骤2搭建的结构对步骤1准备的数据进行训练,得到训练好的多分支渐进式增强模型;步骤4,基于步骤3得到的训练好的多分支渐进式增强模型进行数据测试。本发明通过不同尺度的多分支增强网络克服了弱光图像退化问题。</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjsOwjAQBcA0FAi4w3KAFCaBHkUgKgqERBlt4odtxT_ZBq5PCg5ANc0sq9sDPJE1ShcyjhUIXrMf4eALORQdJA2cISl4ci9bTD2kOWiKKaiEnM0bJIFIHuUT0rSuFk-2GZufq2p7Pt27S40YeuTII-bZd1chDu1-1zbi2PxzvhGNOBw</recordid><startdate>20230718</startdate><enddate>20230718</enddate><creator>YU YOUJIANG</creator><creator>YUAN CHENG</creator><creator>CHEN XIAOGAI</creator><creator>LI MINQI</creator><creator>ZHANG KAIBING</creator><creator>LU JIAN</creator><scope>EVB</scope></search><sort><creationdate>20230718</creationdate><title>Weak light image enhancement method based on multi-branch progressive deep network</title><author>YU YOUJIANG ; YUAN CHENG ; CHEN XIAOGAI ; LI MINQI ; ZHANG KAIBING ; LU JIAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116452431A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>YU YOUJIANG</creatorcontrib><creatorcontrib>YUAN CHENG</creatorcontrib><creatorcontrib>CHEN XIAOGAI</creatorcontrib><creatorcontrib>LI MINQI</creatorcontrib><creatorcontrib>ZHANG KAIBING</creatorcontrib><creatorcontrib>LU JIAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YU YOUJIANG</au><au>YUAN CHENG</au><au>CHEN XIAOGAI</au><au>LI MINQI</au><au>ZHANG KAIBING</au><au>LU JIAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Weak light image enhancement method based on multi-branch progressive deep network</title><date>2023-07-18</date><risdate>2023</risdate><abstract>The invention discloses a multi-branch progressive weak light image enhancement method. The method comprises the following steps: step 1, preparing data; step 2, building a multi-branch progressive enhancement model; 3, training the data prepared in the step 1 according to the structure built in the step 2 to obtain a trained multi-branch progressive enhancement model; and 4, performing data testing based on the trained multi-branch progressive enhancement model obtained in the step 3. According to the method, the problem of low-light image degradation is solved through the multi-branch enhancement networks with different scales. 本发明公开了一种基于多分支渐进式的弱光图像增强方法,包括如下步骤:步骤1,准备数据;步骤2,搭建多分支渐进式增强模型;步骤3,根据步骤2搭建的结构对步骤1准备的数据进行训练,得到训练好的多分支渐进式增强模型;步骤4,基于步骤3得到的训练好的多分支渐进式增强模型进行数据测试。本发明通过不同尺度的多分支增强网络克服了弱光图像退化问题。</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116452431A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Weak light image enhancement method based on multi-branch progressive deep network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A50%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YU%20YOUJIANG&rft.date=2023-07-18&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116452431A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true