Obstacle avoidance method, device and equipment for mobile robot and storage medium
The invention discloses a mobile robot obstacle avoidance method, device and equipment and a storage medium, and relates to the technical field of robot control, and the method comprises the steps: respectively inputting dynamic obstacle state information and robot state information at a current mom...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | PENG SHUTING DENG FUQIN ZHONG JIAMING ZHANG XICHENG HUANG HUANZHAO TAN CHAO'EN GUAN HUIFENG LIN TIANLIN |
description | The invention discloses a mobile robot obstacle avoidance method, device and equipment and a storage medium, and relates to the technical field of robot control, and the method comprises the steps: respectively inputting dynamic obstacle state information and robot state information at a current moment into a corresponding full-connection network for coding to obtain environment features; inputting the environment characteristics into a recurrent neural network constructed based on a gated recurrent neural network and a probabilistic neural network so as to model the current dynamic environment, and determining whether the current environment characterization condition meets a preset condition based on the probability output by the probabilistic neural network; the probabilistic neural network is a network constructed based on a probability activation function; if yes, generating a corresponding Q value and an obstacle avoidance action strategy based on the environment intermediate characteristics output by t |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116430842A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116430842A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116430842A3</originalsourceid><addsrcrecordid>eNrjZAj2TyouSUzOSVVILMvPTEnMS05VyE0tychP0VFISS3LBHIT81IUUgtLMwtyU_NKFNLyixRy85MygTqK8pPyS8DSxSX5RYnpIJ0pmaW5PAysaYk5xam8UJqbQdHNNcTZQze1ID8-tbggMTk1L7Uk3tnP0NDMxNjAwsTI0ZgYNQAyMzgh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Obstacle avoidance method, device and equipment for mobile robot and storage medium</title><source>esp@cenet</source><creator>PENG SHUTING ; DENG FUQIN ; ZHONG JIAMING ; ZHANG XICHENG ; HUANG HUANZHAO ; TAN CHAO'EN ; GUAN HUIFENG ; LIN TIANLIN</creator><creatorcontrib>PENG SHUTING ; DENG FUQIN ; ZHONG JIAMING ; ZHANG XICHENG ; HUANG HUANZHAO ; TAN CHAO'EN ; GUAN HUIFENG ; LIN TIANLIN</creatorcontrib><description>The invention discloses a mobile robot obstacle avoidance method, device and equipment and a storage medium, and relates to the technical field of robot control, and the method comprises the steps: respectively inputting dynamic obstacle state information and robot state information at a current moment into a corresponding full-connection network for coding to obtain environment features; inputting the environment characteristics into a recurrent neural network constructed based on a gated recurrent neural network and a probabilistic neural network so as to model the current dynamic environment, and determining whether the current environment characterization condition meets a preset condition based on the probability output by the probabilistic neural network; the probabilistic neural network is a network constructed based on a probability activation function; if yes, generating a corresponding Q value and an obstacle avoidance action strategy based on the environment intermediate characteristics output by t</description><language>chi ; eng</language><subject>CONTROLLING ; PHYSICS ; REGULATING ; SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230714&DB=EPODOC&CC=CN&NR=116430842A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25569,76552</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230714&DB=EPODOC&CC=CN&NR=116430842A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>PENG SHUTING</creatorcontrib><creatorcontrib>DENG FUQIN</creatorcontrib><creatorcontrib>ZHONG JIAMING</creatorcontrib><creatorcontrib>ZHANG XICHENG</creatorcontrib><creatorcontrib>HUANG HUANZHAO</creatorcontrib><creatorcontrib>TAN CHAO'EN</creatorcontrib><creatorcontrib>GUAN HUIFENG</creatorcontrib><creatorcontrib>LIN TIANLIN</creatorcontrib><title>Obstacle avoidance method, device and equipment for mobile robot and storage medium</title><description>The invention discloses a mobile robot obstacle avoidance method, device and equipment and a storage medium, and relates to the technical field of robot control, and the method comprises the steps: respectively inputting dynamic obstacle state information and robot state information at a current moment into a corresponding full-connection network for coding to obtain environment features; inputting the environment characteristics into a recurrent neural network constructed based on a gated recurrent neural network and a probabilistic neural network so as to model the current dynamic environment, and determining whether the current environment characterization condition meets a preset condition based on the probability output by the probabilistic neural network; the probabilistic neural network is a network constructed based on a probability activation function; if yes, generating a corresponding Q value and an obstacle avoidance action strategy based on the environment intermediate characteristics output by t</description><subject>CONTROLLING</subject><subject>PHYSICS</subject><subject>REGULATING</subject><subject>SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZAj2TyouSUzOSVVILMvPTEnMS05VyE0tychP0VFISS3LBHIT81IUUgtLMwtyU_NKFNLyixRy85MygTqK8pPyS8DSxSX5RYnpIJ0pmaW5PAysaYk5xam8UJqbQdHNNcTZQze1ID8-tbggMTk1L7Uk3tnP0NDMxNjAwsTI0ZgYNQAyMzgh</recordid><startdate>20230714</startdate><enddate>20230714</enddate><creator>PENG SHUTING</creator><creator>DENG FUQIN</creator><creator>ZHONG JIAMING</creator><creator>ZHANG XICHENG</creator><creator>HUANG HUANZHAO</creator><creator>TAN CHAO'EN</creator><creator>GUAN HUIFENG</creator><creator>LIN TIANLIN</creator><scope>EVB</scope></search><sort><creationdate>20230714</creationdate><title>Obstacle avoidance method, device and equipment for mobile robot and storage medium</title><author>PENG SHUTING ; DENG FUQIN ; ZHONG JIAMING ; ZHANG XICHENG ; HUANG HUANZHAO ; TAN CHAO'EN ; GUAN HUIFENG ; LIN TIANLIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116430842A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CONTROLLING</topic><topic>PHYSICS</topic><topic>REGULATING</topic><topic>SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES</topic><toplevel>online_resources</toplevel><creatorcontrib>PENG SHUTING</creatorcontrib><creatorcontrib>DENG FUQIN</creatorcontrib><creatorcontrib>ZHONG JIAMING</creatorcontrib><creatorcontrib>ZHANG XICHENG</creatorcontrib><creatorcontrib>HUANG HUANZHAO</creatorcontrib><creatorcontrib>TAN CHAO'EN</creatorcontrib><creatorcontrib>GUAN HUIFENG</creatorcontrib><creatorcontrib>LIN TIANLIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>PENG SHUTING</au><au>DENG FUQIN</au><au>ZHONG JIAMING</au><au>ZHANG XICHENG</au><au>HUANG HUANZHAO</au><au>TAN CHAO'EN</au><au>GUAN HUIFENG</au><au>LIN TIANLIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Obstacle avoidance method, device and equipment for mobile robot and storage medium</title><date>2023-07-14</date><risdate>2023</risdate><abstract>The invention discloses a mobile robot obstacle avoidance method, device and equipment and a storage medium, and relates to the technical field of robot control, and the method comprises the steps: respectively inputting dynamic obstacle state information and robot state information at a current moment into a corresponding full-connection network for coding to obtain environment features; inputting the environment characteristics into a recurrent neural network constructed based on a gated recurrent neural network and a probabilistic neural network so as to model the current dynamic environment, and determining whether the current environment characterization condition meets a preset condition based on the probability output by the probabilistic neural network; the probabilistic neural network is a network constructed based on a probability activation function; if yes, generating a corresponding Q value and an obstacle avoidance action strategy based on the environment intermediate characteristics output by t</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN116430842A |
source | esp@cenet |
subjects | CONTROLLING PHYSICS REGULATING SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES |
title | Obstacle avoidance method, device and equipment for mobile robot and storage medium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T10%3A09%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=PENG%20SHUTING&rft.date=2023-07-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116430842A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |