Port equipment operation and maintenance fault sound monitoring method based on collaborative neural network algorithm

The invention provides a port equipment operation and maintenance fault sound monitoring method based on a collaborative neural network algorithm, and the method comprises the steps: pre-collecting sound data which comprise sound data of normal operation of equipment and fault sound data; extracting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LU HAONAN, FU QIANG, WANG MIHUAN, LIU YUHAI, YU YANG, ZHANG CHUAN, SUN XUAN, ZOU JUNPENG, LIU ZIMING, SONG YUAN, LUO WEIQIANG, ZUO JUN, YANG DUOBING
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LU HAONAN
FU QIANG
WANG MIHUAN
LIU YUHAI
YU YANG
ZHANG CHUAN
SUN XUAN
ZOU JUNPENG
LIU ZIMING
SONG YUAN
LUO WEIQIANG
ZUO JUN
YANG DUOBING
description The invention provides a port equipment operation and maintenance fault sound monitoring method based on a collaborative neural network algorithm, and the method comprises the steps: pre-collecting sound data which comprise sound data of normal operation of equipment and fault sound data; extracting audio features in the pre-collected sound data; and creating a sound recognition model based on the extracted audio features, and recognizing fault sound by using the sound recognition model. According to the harbor equipment operation and maintenance fault sound monitoring method based on the collaborative neural network algorithm, a harbor equipment operation fault detection scheme is provided, sound faults are identified in a graded mode, and then a processing method is provided in a hierarchical mode. 本发明提供了一种基于协同神经网络算法的港口设备运维故障声音监测方法,包括:预采集声音数据,声音数据包括设备正常运行的声音数据和故障声音数据;提取预采集声音数据中的音频特征;基于提取的音频特征创建声音识别模型,利用声音识别模型识别故障声音。本发明所述的基于协同神经网络算法的港口设备运维故障声音监测方法提出了一种港口设备运行故障检测方案,对声音故障分级识别,进而分层次提出处理方法。
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116416975A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116416975A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116416975A3</originalsourceid><addsrcrecordid>eNqNjDEKwkAQRdNYiHqH8QAWQY1YSlCsxMI-TJIxWdydibuz8fpuwANYPXj89-fZeBevQO9oBkesIAN5VCMMyC04NKzEyA3BE6NVCBInL2xUvOEOHGkvLdQYqIWUNWIt1jKdjARM0aNN0I_4F6DtUqW9W2azJ9pAqx8X2fpyfpTXDQ1SURiwodRU5S3Pi11eHA_70_afzRfOiEbY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Port equipment operation and maintenance fault sound monitoring method based on collaborative neural network algorithm</title><source>esp@cenet</source><creator>LU HAONAN ; FU QIANG ; WANG MIHUAN ; LIU YUHAI ; YU YANG ; ZHANG CHUAN ; SUN XUAN ; ZOU JUNPENG ; LIU ZIMING ; SONG YUAN ; LUO WEIQIANG ; ZUO JUN ; YANG DUOBING</creator><creatorcontrib>LU HAONAN ; FU QIANG ; WANG MIHUAN ; LIU YUHAI ; YU YANG ; ZHANG CHUAN ; SUN XUAN ; ZOU JUNPENG ; LIU ZIMING ; SONG YUAN ; LUO WEIQIANG ; ZUO JUN ; YANG DUOBING</creatorcontrib><description>The invention provides a port equipment operation and maintenance fault sound monitoring method based on a collaborative neural network algorithm, and the method comprises the steps: pre-collecting sound data which comprise sound data of normal operation of equipment and fault sound data; extracting audio features in the pre-collected sound data; and creating a sound recognition model based on the extracted audio features, and recognizing fault sound by using the sound recognition model. According to the harbor equipment operation and maintenance fault sound monitoring method based on the collaborative neural network algorithm, a harbor equipment operation fault detection scheme is provided, sound faults are identified in a graded mode, and then a processing method is provided in a hierarchical mode. 本发明提供了一种基于协同神经网络算法的港口设备运维故障声音监测方法,包括:预采集声音数据,声音数据包括设备正常运行的声音数据和故障声音数据;提取预采集声音数据中的音频特征;基于提取的音频特征创建声音识别模型,利用声音识别模型识别故障声音。本发明所述的基于协同神经网络算法的港口设备运维故障声音监测方法提出了一种港口设备运行故障检测方案,对声音故障分级识别,进而分层次提出处理方法。</description><language>chi ; eng</language><subject>ACOUSTICS ; CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC ORINFRASONIC WAVES ; MEASURING ; MUSICAL INSTRUMENTS ; PHYSICS ; SPEECH ANALYSIS OR SYNTHESIS ; SPEECH OR AUDIO CODING OR DECODING ; SPEECH OR VOICE PROCESSING ; SPEECH RECOGNITION ; TESTING</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230711&amp;DB=EPODOC&amp;CC=CN&amp;NR=116416975A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230711&amp;DB=EPODOC&amp;CC=CN&amp;NR=116416975A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LU HAONAN</creatorcontrib><creatorcontrib>FU QIANG</creatorcontrib><creatorcontrib>WANG MIHUAN</creatorcontrib><creatorcontrib>LIU YUHAI</creatorcontrib><creatorcontrib>YU YANG</creatorcontrib><creatorcontrib>ZHANG CHUAN</creatorcontrib><creatorcontrib>SUN XUAN</creatorcontrib><creatorcontrib>ZOU JUNPENG</creatorcontrib><creatorcontrib>LIU ZIMING</creatorcontrib><creatorcontrib>SONG YUAN</creatorcontrib><creatorcontrib>LUO WEIQIANG</creatorcontrib><creatorcontrib>ZUO JUN</creatorcontrib><creatorcontrib>YANG DUOBING</creatorcontrib><title>Port equipment operation and maintenance fault sound monitoring method based on collaborative neural network algorithm</title><description>The invention provides a port equipment operation and maintenance fault sound monitoring method based on a collaborative neural network algorithm, and the method comprises the steps: pre-collecting sound data which comprise sound data of normal operation of equipment and fault sound data; extracting audio features in the pre-collected sound data; and creating a sound recognition model based on the extracted audio features, and recognizing fault sound by using the sound recognition model. According to the harbor equipment operation and maintenance fault sound monitoring method based on the collaborative neural network algorithm, a harbor equipment operation fault detection scheme is provided, sound faults are identified in a graded mode, and then a processing method is provided in a hierarchical mode. 本发明提供了一种基于协同神经网络算法的港口设备运维故障声音监测方法,包括:预采集声音数据,声音数据包括设备正常运行的声音数据和故障声音数据;提取预采集声音数据中的音频特征;基于提取的音频特征创建声音识别模型,利用声音识别模型识别故障声音。本发明所述的基于协同神经网络算法的港口设备运维故障声音监测方法提出了一种港口设备运行故障检测方案,对声音故障分级识别,进而分层次提出处理方法。</description><subject>ACOUSTICS</subject><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC ORINFRASONIC WAVES</subject><subject>MEASURING</subject><subject>MUSICAL INSTRUMENTS</subject><subject>PHYSICS</subject><subject>SPEECH ANALYSIS OR SYNTHESIS</subject><subject>SPEECH OR AUDIO CODING OR DECODING</subject><subject>SPEECH OR VOICE PROCESSING</subject><subject>SPEECH RECOGNITION</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDEKwkAQRdNYiHqH8QAWQY1YSlCsxMI-TJIxWdydibuz8fpuwANYPXj89-fZeBevQO9oBkesIAN5VCMMyC04NKzEyA3BE6NVCBInL2xUvOEOHGkvLdQYqIWUNWIt1jKdjARM0aNN0I_4F6DtUqW9W2azJ9pAqx8X2fpyfpTXDQ1SURiwodRU5S3Pi11eHA_70_afzRfOiEbY</recordid><startdate>20230711</startdate><enddate>20230711</enddate><creator>LU HAONAN</creator><creator>FU QIANG</creator><creator>WANG MIHUAN</creator><creator>LIU YUHAI</creator><creator>YU YANG</creator><creator>ZHANG CHUAN</creator><creator>SUN XUAN</creator><creator>ZOU JUNPENG</creator><creator>LIU ZIMING</creator><creator>SONG YUAN</creator><creator>LUO WEIQIANG</creator><creator>ZUO JUN</creator><creator>YANG DUOBING</creator><scope>EVB</scope></search><sort><creationdate>20230711</creationdate><title>Port equipment operation and maintenance fault sound monitoring method based on collaborative neural network algorithm</title><author>LU HAONAN ; FU QIANG ; WANG MIHUAN ; LIU YUHAI ; YU YANG ; ZHANG CHUAN ; SUN XUAN ; ZOU JUNPENG ; LIU ZIMING ; SONG YUAN ; LUO WEIQIANG ; ZUO JUN ; YANG DUOBING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116416975A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>ACOUSTICS</topic><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC ORINFRASONIC WAVES</topic><topic>MEASURING</topic><topic>MUSICAL INSTRUMENTS</topic><topic>PHYSICS</topic><topic>SPEECH ANALYSIS OR SYNTHESIS</topic><topic>SPEECH OR AUDIO CODING OR DECODING</topic><topic>SPEECH OR VOICE PROCESSING</topic><topic>SPEECH RECOGNITION</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>LU HAONAN</creatorcontrib><creatorcontrib>FU QIANG</creatorcontrib><creatorcontrib>WANG MIHUAN</creatorcontrib><creatorcontrib>LIU YUHAI</creatorcontrib><creatorcontrib>YU YANG</creatorcontrib><creatorcontrib>ZHANG CHUAN</creatorcontrib><creatorcontrib>SUN XUAN</creatorcontrib><creatorcontrib>ZOU JUNPENG</creatorcontrib><creatorcontrib>LIU ZIMING</creatorcontrib><creatorcontrib>SONG YUAN</creatorcontrib><creatorcontrib>LUO WEIQIANG</creatorcontrib><creatorcontrib>ZUO JUN</creatorcontrib><creatorcontrib>YANG DUOBING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LU HAONAN</au><au>FU QIANG</au><au>WANG MIHUAN</au><au>LIU YUHAI</au><au>YU YANG</au><au>ZHANG CHUAN</au><au>SUN XUAN</au><au>ZOU JUNPENG</au><au>LIU ZIMING</au><au>SONG YUAN</au><au>LUO WEIQIANG</au><au>ZUO JUN</au><au>YANG DUOBING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Port equipment operation and maintenance fault sound monitoring method based on collaborative neural network algorithm</title><date>2023-07-11</date><risdate>2023</risdate><abstract>The invention provides a port equipment operation and maintenance fault sound monitoring method based on a collaborative neural network algorithm, and the method comprises the steps: pre-collecting sound data which comprise sound data of normal operation of equipment and fault sound data; extracting audio features in the pre-collected sound data; and creating a sound recognition model based on the extracted audio features, and recognizing fault sound by using the sound recognition model. According to the harbor equipment operation and maintenance fault sound monitoring method based on the collaborative neural network algorithm, a harbor equipment operation fault detection scheme is provided, sound faults are identified in a graded mode, and then a processing method is provided in a hierarchical mode. 本发明提供了一种基于协同神经网络算法的港口设备运维故障声音监测方法,包括:预采集声音数据,声音数据包括设备正常运行的声音数据和故障声音数据;提取预采集声音数据中的音频特征;基于提取的音频特征创建声音识别模型,利用声音识别模型识别故障声音。本发明所述的基于协同神经网络算法的港口设备运维故障声音监测方法提出了一种港口设备运行故障检测方案,对声音故障分级识别,进而分层次提出处理方法。</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116416975A
source esp@cenet
subjects ACOUSTICS
CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC ORINFRASONIC WAVES
MEASURING
MUSICAL INSTRUMENTS
PHYSICS
SPEECH ANALYSIS OR SYNTHESIS
SPEECH OR AUDIO CODING OR DECODING
SPEECH OR VOICE PROCESSING
SPEECH RECOGNITION
TESTING
title Port equipment operation and maintenance fault sound monitoring method based on collaborative neural network algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A36%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LU%20HAONAN&rft.date=2023-07-11&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116416975A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true