Autonomous training method and device of algorithm model, equipment and storage medium

The invention provides an autonomous training method and device of an algorithm model, equipment and a storage medium, and relates to the technical field of data processing. The method comprises the steps of determining whether to start a model training task according to parameters of a to-be-execut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: GUAN KAI, FAN CHANGJIE, LYU TANGJIE, SHEN XUDONG, SONG LINHAI, XIAO ZHENMIN, HU ZHIPENG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator GUAN KAI
FAN CHANGJIE
LYU TANGJIE
SHEN XUDONG
SONG LINHAI
XIAO ZHENMIN
HU ZHIPENG
description The invention provides an autonomous training method and device of an algorithm model, equipment and a storage medium, and relates to the technical field of data processing. The method comprises the steps of determining whether to start a model training task according to parameters of a to-be-executed training task; if it is determined that the model training task is started, training a model corresponding to the to-be-executed training task based on a training data set to obtain a training index; judging according to the training index and a target parameter of the model, and determining whether an evaluation condition is met or not; and if the evaluation condition is reached, obtaining a trained target model. Compared with the prior art, the method avoids the problem that the algorithm model needs a lot of manual participation and is highly dependent on manual work. 本申请提供一种算法模型的自主训练方法、装置、设备及存储介质,涉及数据处理技术领域。该方法包括:根据待执行训练任务的参数,确定是否启动模型训练任务;若确定启动模型训练任务,则基于训练数据集对所述待执行训练任务对应的模型进行训练,获取训练指标;根据所述训练指标和所述模型的目标参数进行判断,
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116415148A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116415148A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116415148A3</originalsourceid><addsrcrecordid>eNqNy7EKwjAQgOEsDqK-w7nrEKzStRTFyUlcy9Fc00CSi8nF51fEB3D6l-9fqkdXhSMHrgUko4suWggkMxvAaMDQy40EPAF6y9nJHCCwIb8DelaXAkX5wiKc0dLnNa6GtVpM6Attfl2p7eV87697SjxQSThSJBn6m9anRh9103aHf8wbORM5rw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Autonomous training method and device of algorithm model, equipment and storage medium</title><source>esp@cenet</source><creator>GUAN KAI ; FAN CHANGJIE ; LYU TANGJIE ; SHEN XUDONG ; SONG LINHAI ; XIAO ZHENMIN ; HU ZHIPENG</creator><creatorcontrib>GUAN KAI ; FAN CHANGJIE ; LYU TANGJIE ; SHEN XUDONG ; SONG LINHAI ; XIAO ZHENMIN ; HU ZHIPENG</creatorcontrib><description>The invention provides an autonomous training method and device of an algorithm model, equipment and a storage medium, and relates to the technical field of data processing. The method comprises the steps of determining whether to start a model training task according to parameters of a to-be-executed training task; if it is determined that the model training task is started, training a model corresponding to the to-be-executed training task based on a training data set to obtain a training index; judging according to the training index and a target parameter of the model, and determining whether an evaluation condition is met or not; and if the evaluation condition is reached, obtaining a trained target model. Compared with the prior art, the method avoids the problem that the algorithm model needs a lot of manual participation and is highly dependent on manual work. 本申请提供一种算法模型的自主训练方法、装置、设备及存储介质,涉及数据处理技术领域。该方法包括:根据待执行训练任务的参数,确定是否启动模型训练任务;若确定启动模型训练任务,则基于训练数据集对所述待执行训练任务对应的模型进行训练,获取训练指标;根据所述训练指标和所述模型的目标参数进行判断,</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230711&amp;DB=EPODOC&amp;CC=CN&amp;NR=116415148A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230711&amp;DB=EPODOC&amp;CC=CN&amp;NR=116415148A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GUAN KAI</creatorcontrib><creatorcontrib>FAN CHANGJIE</creatorcontrib><creatorcontrib>LYU TANGJIE</creatorcontrib><creatorcontrib>SHEN XUDONG</creatorcontrib><creatorcontrib>SONG LINHAI</creatorcontrib><creatorcontrib>XIAO ZHENMIN</creatorcontrib><creatorcontrib>HU ZHIPENG</creatorcontrib><title>Autonomous training method and device of algorithm model, equipment and storage medium</title><description>The invention provides an autonomous training method and device of an algorithm model, equipment and a storage medium, and relates to the technical field of data processing. The method comprises the steps of determining whether to start a model training task according to parameters of a to-be-executed training task; if it is determined that the model training task is started, training a model corresponding to the to-be-executed training task based on a training data set to obtain a training index; judging according to the training index and a target parameter of the model, and determining whether an evaluation condition is met or not; and if the evaluation condition is reached, obtaining a trained target model. Compared with the prior art, the method avoids the problem that the algorithm model needs a lot of manual participation and is highly dependent on manual work. 本申请提供一种算法模型的自主训练方法、装置、设备及存储介质,涉及数据处理技术领域。该方法包括:根据待执行训练任务的参数,确定是否启动模型训练任务;若确定启动模型训练任务,则基于训练数据集对所述待执行训练任务对应的模型进行训练,获取训练指标;根据所述训练指标和所述模型的目标参数进行判断,</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNy7EKwjAQgOEsDqK-w7nrEKzStRTFyUlcy9Fc00CSi8nF51fEB3D6l-9fqkdXhSMHrgUko4suWggkMxvAaMDQy40EPAF6y9nJHCCwIb8DelaXAkX5wiKc0dLnNa6GtVpM6Attfl2p7eV87697SjxQSThSJBn6m9anRh9103aHf8wbORM5rw</recordid><startdate>20230711</startdate><enddate>20230711</enddate><creator>GUAN KAI</creator><creator>FAN CHANGJIE</creator><creator>LYU TANGJIE</creator><creator>SHEN XUDONG</creator><creator>SONG LINHAI</creator><creator>XIAO ZHENMIN</creator><creator>HU ZHIPENG</creator><scope>EVB</scope></search><sort><creationdate>20230711</creationdate><title>Autonomous training method and device of algorithm model, equipment and storage medium</title><author>GUAN KAI ; FAN CHANGJIE ; LYU TANGJIE ; SHEN XUDONG ; SONG LINHAI ; XIAO ZHENMIN ; HU ZHIPENG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116415148A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>GUAN KAI</creatorcontrib><creatorcontrib>FAN CHANGJIE</creatorcontrib><creatorcontrib>LYU TANGJIE</creatorcontrib><creatorcontrib>SHEN XUDONG</creatorcontrib><creatorcontrib>SONG LINHAI</creatorcontrib><creatorcontrib>XIAO ZHENMIN</creatorcontrib><creatorcontrib>HU ZHIPENG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GUAN KAI</au><au>FAN CHANGJIE</au><au>LYU TANGJIE</au><au>SHEN XUDONG</au><au>SONG LINHAI</au><au>XIAO ZHENMIN</au><au>HU ZHIPENG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Autonomous training method and device of algorithm model, equipment and storage medium</title><date>2023-07-11</date><risdate>2023</risdate><abstract>The invention provides an autonomous training method and device of an algorithm model, equipment and a storage medium, and relates to the technical field of data processing. The method comprises the steps of determining whether to start a model training task according to parameters of a to-be-executed training task; if it is determined that the model training task is started, training a model corresponding to the to-be-executed training task based on a training data set to obtain a training index; judging according to the training index and a target parameter of the model, and determining whether an evaluation condition is met or not; and if the evaluation condition is reached, obtaining a trained target model. Compared with the prior art, the method avoids the problem that the algorithm model needs a lot of manual participation and is highly dependent on manual work. 本申请提供一种算法模型的自主训练方法、装置、设备及存储介质,涉及数据处理技术领域。该方法包括:根据待执行训练任务的参数,确定是否启动模型训练任务;若确定启动模型训练任务,则基于训练数据集对所述待执行训练任务对应的模型进行训练,获取训练指标;根据所述训练指标和所述模型的目标参数进行判断,</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116415148A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Autonomous training method and device of algorithm model, equipment and storage medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A19%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GUAN%20KAI&rft.date=2023-07-11&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116415148A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true