Three-dimensional target detection method based on local features of key point cloud

The invention discloses a three-dimensional target detection method based on key point cloud local features. The method comprises the following steps: acquiring to-be-detected point cloud data at the current moment; inputting the obtained point cloud data into a trained multi-dimensional feature fus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: YANG QINGHUA, NI JINHU, TONG YAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator YANG QINGHUA
NI JINHU
TONG YAN
description The invention discloses a three-dimensional target detection method based on key point cloud local features. The method comprises the following steps: acquiring to-be-detected point cloud data at the current moment; inputting the obtained point cloud data into a trained multi-dimensional feature fusion feature coding network to obtain a target detection result, performing key point sampling and feature coding on the point cloud data in a training sample by the multi-dimensional feature fusion feature coding network to obtain key point point cloud local features, and specifically obtaining N pieces of original point cloud data; sampling N '/3 points from the N points as key points through a space distance farthest point sampling method; sampling N '/3 points from the N points through a feature distance farthest point sampling method; according to the method, the extracted local features of the object are more accurate, semantic information of the object can be better expressed, and subsequent object detection
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116403206A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116403206A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116403206A3</originalsourceid><addsrcrecordid>eNqNirEOgkAQBa-xMOo_rB9AAmLoDdFYWdGT9e4hF49bwi2Ff-8VfoDVZCazNV03LkDh_ISYvEQOpLy8oOSgsJoTTdBRHD05wVH2IDZvA1jXBYlkoDc-NIuPSjbI6vZmM3BIOPy4M8fbtWvvBWbpkWa2iNC-fVRVcy7rU9lc6n-eL5yMOK0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Three-dimensional target detection method based on local features of key point cloud</title><source>esp@cenet</source><creator>YANG QINGHUA ; NI JINHU ; TONG YAN</creator><creatorcontrib>YANG QINGHUA ; NI JINHU ; TONG YAN</creatorcontrib><description>The invention discloses a three-dimensional target detection method based on key point cloud local features. The method comprises the following steps: acquiring to-be-detected point cloud data at the current moment; inputting the obtained point cloud data into a trained multi-dimensional feature fusion feature coding network to obtain a target detection result, performing key point sampling and feature coding on the point cloud data in a training sample by the multi-dimensional feature fusion feature coding network to obtain key point point cloud local features, and specifically obtaining N pieces of original point cloud data; sampling N '/3 points from the N points as key points through a space distance farthest point sampling method; sampling N '/3 points from the N points through a feature distance farthest point sampling method; according to the method, the extracted local features of the object are more accurate, semantic information of the object can be better expressed, and subsequent object detection</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230707&amp;DB=EPODOC&amp;CC=CN&amp;NR=116403206A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230707&amp;DB=EPODOC&amp;CC=CN&amp;NR=116403206A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YANG QINGHUA</creatorcontrib><creatorcontrib>NI JINHU</creatorcontrib><creatorcontrib>TONG YAN</creatorcontrib><title>Three-dimensional target detection method based on local features of key point cloud</title><description>The invention discloses a three-dimensional target detection method based on key point cloud local features. The method comprises the following steps: acquiring to-be-detected point cloud data at the current moment; inputting the obtained point cloud data into a trained multi-dimensional feature fusion feature coding network to obtain a target detection result, performing key point sampling and feature coding on the point cloud data in a training sample by the multi-dimensional feature fusion feature coding network to obtain key point point cloud local features, and specifically obtaining N pieces of original point cloud data; sampling N '/3 points from the N points as key points through a space distance farthest point sampling method; sampling N '/3 points from the N points through a feature distance farthest point sampling method; according to the method, the extracted local features of the object are more accurate, semantic information of the object can be better expressed, and subsequent object detection</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNirEOgkAQBa-xMOo_rB9AAmLoDdFYWdGT9e4hF49bwi2Ff-8VfoDVZCazNV03LkDh_ISYvEQOpLy8oOSgsJoTTdBRHD05wVH2IDZvA1jXBYlkoDc-NIuPSjbI6vZmM3BIOPy4M8fbtWvvBWbpkWa2iNC-fVRVcy7rU9lc6n-eL5yMOK0</recordid><startdate>20230707</startdate><enddate>20230707</enddate><creator>YANG QINGHUA</creator><creator>NI JINHU</creator><creator>TONG YAN</creator><scope>EVB</scope></search><sort><creationdate>20230707</creationdate><title>Three-dimensional target detection method based on local features of key point cloud</title><author>YANG QINGHUA ; NI JINHU ; TONG YAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116403206A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>YANG QINGHUA</creatorcontrib><creatorcontrib>NI JINHU</creatorcontrib><creatorcontrib>TONG YAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YANG QINGHUA</au><au>NI JINHU</au><au>TONG YAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Three-dimensional target detection method based on local features of key point cloud</title><date>2023-07-07</date><risdate>2023</risdate><abstract>The invention discloses a three-dimensional target detection method based on key point cloud local features. The method comprises the following steps: acquiring to-be-detected point cloud data at the current moment; inputting the obtained point cloud data into a trained multi-dimensional feature fusion feature coding network to obtain a target detection result, performing key point sampling and feature coding on the point cloud data in a training sample by the multi-dimensional feature fusion feature coding network to obtain key point point cloud local features, and specifically obtaining N pieces of original point cloud data; sampling N '/3 points from the N points as key points through a space distance farthest point sampling method; sampling N '/3 points from the N points through a feature distance farthest point sampling method; according to the method, the extracted local features of the object are more accurate, semantic information of the object can be better expressed, and subsequent object detection</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116403206A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
PHYSICS
title Three-dimensional target detection method based on local features of key point cloud
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A39%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YANG%20QINGHUA&rft.date=2023-07-07&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116403206A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true