Underwater static small target detection method based on feature fusion

The invention relates to the field of underwater static target detection, in particular to an underwater static small target detection method based on feature fusion. The method comprises the following steps: preprocessing, segmenting and post-processing echo data of a sonar image in sequence to obt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LIU JIA, PANG YAN, XU FENG, FU SHUNAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LIU JIA
PANG YAN
XU FENG
FU SHUNAN
description The invention relates to the field of underwater static target detection, in particular to an underwater static small target detection method based on feature fusion. The method comprises the following steps: preprocessing, segmenting and post-processing echo data of a sonar image in sequence to obtain a potential target area; extracting Hu moment features of the potential target area, and extracting CNN depth features of the potential target area through a convolutional neural network; and splicing and fusing the extracted Hu moment features and CNN depth features to obtain a target classification result. According to the method, most of targets in the sound image can be extracted, and meanwhile, the integrity of the targets is reserved to the maximum extent; the low-level shape feature Hu moment of the target and the CNN depth feature are fused to form a feature fusion network with higher shape feature expression ability for classification, so that the precision of target detection is effectively improved;
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116403060A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116403060A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116403060A3</originalsourceid><addsrcrecordid>eNqNijsOwjAQBd1QIOAOywGQHAWlRxGfigrqaLGfSSTHjrwbcX1ScACq0Whmba7P5FE-rCgkyjo4kpFjJOXyhpKHwumQE43QPnt6scDT4gGscwGFWZa8NavAUbD7cWP2l_OjvR0w5Q4ysUOCdu29qpqjrW1jT_U_zxePhzQd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Underwater static small target detection method based on feature fusion</title><source>esp@cenet</source><creator>LIU JIA ; PANG YAN ; XU FENG ; FU SHUNAN</creator><creatorcontrib>LIU JIA ; PANG YAN ; XU FENG ; FU SHUNAN</creatorcontrib><description>The invention relates to the field of underwater static target detection, in particular to an underwater static small target detection method based on feature fusion. The method comprises the following steps: preprocessing, segmenting and post-processing echo data of a sonar image in sequence to obtain a potential target area; extracting Hu moment features of the potential target area, and extracting CNN depth features of the potential target area through a convolutional neural network; and splicing and fusing the extracted Hu moment features and CNN depth features to obtain a target classification result. According to the method, most of targets in the sound image can be extracted, and meanwhile, the integrity of the targets is reserved to the maximum extent; the low-level shape feature Hu moment of the target and the CNN depth feature are fused to form a feature fusion network with higher shape feature expression ability for classification, so that the precision of target detection is effectively improved;</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230707&amp;DB=EPODOC&amp;CC=CN&amp;NR=116403060A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230707&amp;DB=EPODOC&amp;CC=CN&amp;NR=116403060A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIU JIA</creatorcontrib><creatorcontrib>PANG YAN</creatorcontrib><creatorcontrib>XU FENG</creatorcontrib><creatorcontrib>FU SHUNAN</creatorcontrib><title>Underwater static small target detection method based on feature fusion</title><description>The invention relates to the field of underwater static target detection, in particular to an underwater static small target detection method based on feature fusion. The method comprises the following steps: preprocessing, segmenting and post-processing echo data of a sonar image in sequence to obtain a potential target area; extracting Hu moment features of the potential target area, and extracting CNN depth features of the potential target area through a convolutional neural network; and splicing and fusing the extracted Hu moment features and CNN depth features to obtain a target classification result. According to the method, most of targets in the sound image can be extracted, and meanwhile, the integrity of the targets is reserved to the maximum extent; the low-level shape feature Hu moment of the target and the CNN depth feature are fused to form a feature fusion network with higher shape feature expression ability for classification, so that the precision of target detection is effectively improved;</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNijsOwjAQBd1QIOAOywGQHAWlRxGfigrqaLGfSSTHjrwbcX1ScACq0Whmba7P5FE-rCgkyjo4kpFjJOXyhpKHwumQE43QPnt6scDT4gGscwGFWZa8NavAUbD7cWP2l_OjvR0w5Q4ysUOCdu29qpqjrW1jT_U_zxePhzQd</recordid><startdate>20230707</startdate><enddate>20230707</enddate><creator>LIU JIA</creator><creator>PANG YAN</creator><creator>XU FENG</creator><creator>FU SHUNAN</creator><scope>EVB</scope></search><sort><creationdate>20230707</creationdate><title>Underwater static small target detection method based on feature fusion</title><author>LIU JIA ; PANG YAN ; XU FENG ; FU SHUNAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116403060A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LIU JIA</creatorcontrib><creatorcontrib>PANG YAN</creatorcontrib><creatorcontrib>XU FENG</creatorcontrib><creatorcontrib>FU SHUNAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIU JIA</au><au>PANG YAN</au><au>XU FENG</au><au>FU SHUNAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Underwater static small target detection method based on feature fusion</title><date>2023-07-07</date><risdate>2023</risdate><abstract>The invention relates to the field of underwater static target detection, in particular to an underwater static small target detection method based on feature fusion. The method comprises the following steps: preprocessing, segmenting and post-processing echo data of a sonar image in sequence to obtain a potential target area; extracting Hu moment features of the potential target area, and extracting CNN depth features of the potential target area through a convolutional neural network; and splicing and fusing the extracted Hu moment features and CNN depth features to obtain a target classification result. According to the method, most of targets in the sound image can be extracted, and meanwhile, the integrity of the targets is reserved to the maximum extent; the low-level shape feature Hu moment of the target and the CNN depth feature are fused to form a feature fusion network with higher shape feature expression ability for classification, so that the precision of target detection is effectively improved;</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116403060A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
PHYSICS
title Underwater static small target detection method based on feature fusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T05%3A11%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIU%20JIA&rft.date=2023-07-07&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116403060A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true