Unmanned vehicle dynamic selection method for dam intelligent collaborative inspection

The invention discloses an unmanned vehicle dynamic selection method for dam intelligent collaborative inspection, which performs corresponding inspection tasks in a multi-node collaborative manner aiming at the isomerism of edge equipment based on federated learning in a real dam reservoir area env...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: MAO YINGCHI, XU SHUFANG, JIAN SHUMING, LIU JIN, WANG YI, ZHAO SHENGJIE, ZHANG RUN, CHEN KUN, SHEN FENGQUN, DING YUJIANG, WANG ZICHENG, SHEN LIJUAN, XIONG CHENGLONG, NIE BINGBING
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator MAO YINGCHI
XU SHUFANG
JIAN SHUMING
LIU JIN
WANG YI
ZHAO SHENGJIE
ZHANG RUN
CHEN KUN
SHEN FENGQUN
DING YUJIANG
WANG ZICHENG
SHEN LIJUAN
XIONG CHENGLONG
NIE BINGBING
description The invention discloses an unmanned vehicle dynamic selection method for dam intelligent collaborative inspection, which performs corresponding inspection tasks in a multi-node collaborative manner aiming at the isomerism of edge equipment based on federated learning in a real dam reservoir area environment, and comprises the following steps: constructing a local calculation efficiency evaluation standard of nodes; grouping according to the representation of the computing power of the node client; selecting a weight through local data representativeness evaluation construction in the group, selecting a client with the most data representativeness to participate in local training, and fusing results of each group to complete client selection; and after aggregation of each iteration round is finished, updating the local computing efficiency of the client according to the training time of the latest round, and repeating the steps to dynamically update a client selection result. According to the method, the parti
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116402275A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116402275A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116402275A3</originalsourceid><addsrcrecordid>eNqNi7EKwkAQBdNYiPoP6wcIJmqsJShWVmob1rsXc7C3d-SOgH-voB9gNcXMTIv7TT2rwtKI3hkB2Zeyd4YSBCa7oOSR-2CpCwNZ9uQ0Q8Q9oZlMEOFHGDi7ER-T4veZF5OOJWHx46xYno7X5rxCDC1SZANFbptLWdbbdVXtd4fNP80bdcI6Ug</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Unmanned vehicle dynamic selection method for dam intelligent collaborative inspection</title><source>esp@cenet</source><creator>MAO YINGCHI ; XU SHUFANG ; JIAN SHUMING ; LIU JIN ; WANG YI ; ZHAO SHENGJIE ; ZHANG RUN ; CHEN KUN ; SHEN FENGQUN ; DING YUJIANG ; WANG ZICHENG ; SHEN LIJUAN ; XIONG CHENGLONG ; NIE BINGBING</creator><creatorcontrib>MAO YINGCHI ; XU SHUFANG ; JIAN SHUMING ; LIU JIN ; WANG YI ; ZHAO SHENGJIE ; ZHANG RUN ; CHEN KUN ; SHEN FENGQUN ; DING YUJIANG ; WANG ZICHENG ; SHEN LIJUAN ; XIONG CHENGLONG ; NIE BINGBING</creatorcontrib><description>The invention discloses an unmanned vehicle dynamic selection method for dam intelligent collaborative inspection, which performs corresponding inspection tasks in a multi-node collaborative manner aiming at the isomerism of edge equipment based on federated learning in a real dam reservoir area environment, and comprises the following steps: constructing a local calculation efficiency evaluation standard of nodes; grouping according to the representation of the computing power of the node client; selecting a weight through local data representativeness evaluation construction in the group, selecting a client with the most data representativeness to participate in local training, and fusing results of each group to complete client selection; and after aggregation of each iteration round is finished, updating the local computing efficiency of the client according to the training time of the latest round, and repeating the steps to dynamically update a client selection result. According to the method, the parti</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230707&amp;DB=EPODOC&amp;CC=CN&amp;NR=116402275A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230707&amp;DB=EPODOC&amp;CC=CN&amp;NR=116402275A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MAO YINGCHI</creatorcontrib><creatorcontrib>XU SHUFANG</creatorcontrib><creatorcontrib>JIAN SHUMING</creatorcontrib><creatorcontrib>LIU JIN</creatorcontrib><creatorcontrib>WANG YI</creatorcontrib><creatorcontrib>ZHAO SHENGJIE</creatorcontrib><creatorcontrib>ZHANG RUN</creatorcontrib><creatorcontrib>CHEN KUN</creatorcontrib><creatorcontrib>SHEN FENGQUN</creatorcontrib><creatorcontrib>DING YUJIANG</creatorcontrib><creatorcontrib>WANG ZICHENG</creatorcontrib><creatorcontrib>SHEN LIJUAN</creatorcontrib><creatorcontrib>XIONG CHENGLONG</creatorcontrib><creatorcontrib>NIE BINGBING</creatorcontrib><title>Unmanned vehicle dynamic selection method for dam intelligent collaborative inspection</title><description>The invention discloses an unmanned vehicle dynamic selection method for dam intelligent collaborative inspection, which performs corresponding inspection tasks in a multi-node collaborative manner aiming at the isomerism of edge equipment based on federated learning in a real dam reservoir area environment, and comprises the following steps: constructing a local calculation efficiency evaluation standard of nodes; grouping according to the representation of the computing power of the node client; selecting a weight through local data representativeness evaluation construction in the group, selecting a client with the most data representativeness to participate in local training, and fusing results of each group to complete client selection; and after aggregation of each iteration round is finished, updating the local computing efficiency of the client according to the training time of the latest round, and repeating the steps to dynamically update a client selection result. According to the method, the parti</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi7EKwkAQBdNYiPoP6wcIJmqsJShWVmob1rsXc7C3d-SOgH-voB9gNcXMTIv7TT2rwtKI3hkB2Zeyd4YSBCa7oOSR-2CpCwNZ9uQ0Q8Q9oZlMEOFHGDi7ER-T4veZF5OOJWHx46xYno7X5rxCDC1SZANFbptLWdbbdVXtd4fNP80bdcI6Ug</recordid><startdate>20230707</startdate><enddate>20230707</enddate><creator>MAO YINGCHI</creator><creator>XU SHUFANG</creator><creator>JIAN SHUMING</creator><creator>LIU JIN</creator><creator>WANG YI</creator><creator>ZHAO SHENGJIE</creator><creator>ZHANG RUN</creator><creator>CHEN KUN</creator><creator>SHEN FENGQUN</creator><creator>DING YUJIANG</creator><creator>WANG ZICHENG</creator><creator>SHEN LIJUAN</creator><creator>XIONG CHENGLONG</creator><creator>NIE BINGBING</creator><scope>EVB</scope></search><sort><creationdate>20230707</creationdate><title>Unmanned vehicle dynamic selection method for dam intelligent collaborative inspection</title><author>MAO YINGCHI ; XU SHUFANG ; JIAN SHUMING ; LIU JIN ; WANG YI ; ZHAO SHENGJIE ; ZHANG RUN ; CHEN KUN ; SHEN FENGQUN ; DING YUJIANG ; WANG ZICHENG ; SHEN LIJUAN ; XIONG CHENGLONG ; NIE BINGBING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116402275A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>MAO YINGCHI</creatorcontrib><creatorcontrib>XU SHUFANG</creatorcontrib><creatorcontrib>JIAN SHUMING</creatorcontrib><creatorcontrib>LIU JIN</creatorcontrib><creatorcontrib>WANG YI</creatorcontrib><creatorcontrib>ZHAO SHENGJIE</creatorcontrib><creatorcontrib>ZHANG RUN</creatorcontrib><creatorcontrib>CHEN KUN</creatorcontrib><creatorcontrib>SHEN FENGQUN</creatorcontrib><creatorcontrib>DING YUJIANG</creatorcontrib><creatorcontrib>WANG ZICHENG</creatorcontrib><creatorcontrib>SHEN LIJUAN</creatorcontrib><creatorcontrib>XIONG CHENGLONG</creatorcontrib><creatorcontrib>NIE BINGBING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MAO YINGCHI</au><au>XU SHUFANG</au><au>JIAN SHUMING</au><au>LIU JIN</au><au>WANG YI</au><au>ZHAO SHENGJIE</au><au>ZHANG RUN</au><au>CHEN KUN</au><au>SHEN FENGQUN</au><au>DING YUJIANG</au><au>WANG ZICHENG</au><au>SHEN LIJUAN</au><au>XIONG CHENGLONG</au><au>NIE BINGBING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Unmanned vehicle dynamic selection method for dam intelligent collaborative inspection</title><date>2023-07-07</date><risdate>2023</risdate><abstract>The invention discloses an unmanned vehicle dynamic selection method for dam intelligent collaborative inspection, which performs corresponding inspection tasks in a multi-node collaborative manner aiming at the isomerism of edge equipment based on federated learning in a real dam reservoir area environment, and comprises the following steps: constructing a local calculation efficiency evaluation standard of nodes; grouping according to the representation of the computing power of the node client; selecting a weight through local data representativeness evaluation construction in the group, selecting a client with the most data representativeness to participate in local training, and fusing results of each group to complete client selection; and after aggregation of each iteration round is finished, updating the local computing efficiency of the client according to the training time of the latest round, and repeating the steps to dynamically update a client selection result. According to the method, the parti</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116402275A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Unmanned vehicle dynamic selection method for dam intelligent collaborative inspection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T01%3A43%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MAO%20YINGCHI&rft.date=2023-07-07&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116402275A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true