Active learning method based on positioning stability and attention loss prediction

The invention discloses an active learning method based on positioning stability and attention loss prediction. A target detection model YOLOv5 is combined to realize landing application in a railway train fault detection related data set. The method comprises the following steps: preparing a railwa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: XU NUO, XIE GUOXUAN, XU QINZHEN, YU FEI, YANG LUXI, YU KEDONG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator XU NUO
XIE GUOXUAN
XU QINZHEN
YU FEI
YANG LUXI
YU KEDONG
description The invention discloses an active learning method based on positioning stability and attention loss prediction. A target detection model YOLOv5 is combined to realize landing application in a railway train fault detection related data set. The method comprises the following steps: preparing a railway train fault image as a target detection data set, and selecting an image target detection model as a task model; constructing an attention module and a loss prediction module; selecting a feature map as input of a loss prediction module according to the task model; calculating a positioning stability score according to the prediction positioning frame change of the sample before and after noise disturbance by the task model; and finally, comprehensively investigating prediction loss and positioning stability, and realizing active learning sample selection. According to the method, the loss prediction module based on the attention mechanism is used for carrying out loss prediction, and multi-dimensional investigat
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116385833A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116385833A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116385833A3</originalsourceid><addsrcrecordid>eNqNikEKwkAMAHvxIOof4gM8lEXptRTFkxe9l3Q3amCbLE0Q_L1UfICnYZhZVtc2Or8IMuEkLA8YyZ-aYECjBCpQ1NhZv80cB87sb0BJgO4kc4KsZlAmShxnX1eLO2ajzY-rans63rrzjor2ZAUjCXnfXer6EJp9E0Ib_nk-mG05Eg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Active learning method based on positioning stability and attention loss prediction</title><source>esp@cenet</source><creator>XU NUO ; XIE GUOXUAN ; XU QINZHEN ; YU FEI ; YANG LUXI ; YU KEDONG</creator><creatorcontrib>XU NUO ; XIE GUOXUAN ; XU QINZHEN ; YU FEI ; YANG LUXI ; YU KEDONG</creatorcontrib><description>The invention discloses an active learning method based on positioning stability and attention loss prediction. A target detection model YOLOv5 is combined to realize landing application in a railway train fault detection related data set. The method comprises the following steps: preparing a railway train fault image as a target detection data set, and selecting an image target detection model as a task model; constructing an attention module and a loss prediction module; selecting a feature map as input of a loss prediction module according to the task model; calculating a positioning stability score according to the prediction positioning frame change of the sample before and after noise disturbance by the task model; and finally, comprehensively investigating prediction loss and positioning stability, and realizing active learning sample selection. According to the method, the loss prediction module based on the attention mechanism is used for carrying out loss prediction, and multi-dimensional investigat</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230704&amp;DB=EPODOC&amp;CC=CN&amp;NR=116385833A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25544,76295</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230704&amp;DB=EPODOC&amp;CC=CN&amp;NR=116385833A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XU NUO</creatorcontrib><creatorcontrib>XIE GUOXUAN</creatorcontrib><creatorcontrib>XU QINZHEN</creatorcontrib><creatorcontrib>YU FEI</creatorcontrib><creatorcontrib>YANG LUXI</creatorcontrib><creatorcontrib>YU KEDONG</creatorcontrib><title>Active learning method based on positioning stability and attention loss prediction</title><description>The invention discloses an active learning method based on positioning stability and attention loss prediction. A target detection model YOLOv5 is combined to realize landing application in a railway train fault detection related data set. The method comprises the following steps: preparing a railway train fault image as a target detection data set, and selecting an image target detection model as a task model; constructing an attention module and a loss prediction module; selecting a feature map as input of a loss prediction module according to the task model; calculating a positioning stability score according to the prediction positioning frame change of the sample before and after noise disturbance by the task model; and finally, comprehensively investigating prediction loss and positioning stability, and realizing active learning sample selection. According to the method, the loss prediction module based on the attention mechanism is used for carrying out loss prediction, and multi-dimensional investigat</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNikEKwkAMAHvxIOof4gM8lEXptRTFkxe9l3Q3amCbLE0Q_L1UfICnYZhZVtc2Or8IMuEkLA8YyZ-aYECjBCpQ1NhZv80cB87sb0BJgO4kc4KsZlAmShxnX1eLO2ajzY-rans63rrzjor2ZAUjCXnfXer6EJp9E0Ib_nk-mG05Eg</recordid><startdate>20230704</startdate><enddate>20230704</enddate><creator>XU NUO</creator><creator>XIE GUOXUAN</creator><creator>XU QINZHEN</creator><creator>YU FEI</creator><creator>YANG LUXI</creator><creator>YU KEDONG</creator><scope>EVB</scope></search><sort><creationdate>20230704</creationdate><title>Active learning method based on positioning stability and attention loss prediction</title><author>XU NUO ; XIE GUOXUAN ; XU QINZHEN ; YU FEI ; YANG LUXI ; YU KEDONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116385833A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>XU NUO</creatorcontrib><creatorcontrib>XIE GUOXUAN</creatorcontrib><creatorcontrib>XU QINZHEN</creatorcontrib><creatorcontrib>YU FEI</creatorcontrib><creatorcontrib>YANG LUXI</creatorcontrib><creatorcontrib>YU KEDONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XU NUO</au><au>XIE GUOXUAN</au><au>XU QINZHEN</au><au>YU FEI</au><au>YANG LUXI</au><au>YU KEDONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Active learning method based on positioning stability and attention loss prediction</title><date>2023-07-04</date><risdate>2023</risdate><abstract>The invention discloses an active learning method based on positioning stability and attention loss prediction. A target detection model YOLOv5 is combined to realize landing application in a railway train fault detection related data set. The method comprises the following steps: preparing a railway train fault image as a target detection data set, and selecting an image target detection model as a task model; constructing an attention module and a loss prediction module; selecting a feature map as input of a loss prediction module according to the task model; calculating a positioning stability score according to the prediction positioning frame change of the sample before and after noise disturbance by the task model; and finally, comprehensively investigating prediction loss and positioning stability, and realizing active learning sample selection. According to the method, the loss prediction module based on the attention mechanism is used for carrying out loss prediction, and multi-dimensional investigat</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116385833A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Active learning method based on positioning stability and attention loss prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A51%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XU%20NUO&rft.date=2023-07-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116385833A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true