Array antenna design system and method based on deep reinforcement learning in complex environment

The invention discloses an intelligent array antenna design system and method based on deep reinforcement learning in a complex environment, relates to the technical field of radar communication, and can better solve the intelligent optimization problem of the radiation performance of an array anten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: JIN CHENG, LYU QIHAO, CAO KAIQI, ZHANG BINCHAO
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator JIN CHENG
LYU QIHAO
CAO KAIQI
ZHANG BINCHAO
description The invention discloses an intelligent array antenna design system and method based on deep reinforcement learning in a complex environment, relates to the technical field of radar communication, and can better solve the intelligent optimization problem of the radiation performance of an array antenna in the complex environment. The system comprises an execution module and an evaluation module. The execution module is used for simulating the radiation performance of the array antenna in an actual environment, and comprises an array antenna simulation unit and a working environment simulation unit. The evaluation module comprises an algorithm unit and a data interface, and the algorithm unit executes a phase regulation and control algorithm based on deep reinforcement learning and outputs phase distribution of corresponding array antennas. The execution module pre-processes radiation performance data of the simulated array antenna and then sends the radiation performance data to the algorithm unit through the
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116384213A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116384213A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116384213A3</originalsourceid><addsrcrecordid>eNqNijEKwkAUBdNYiHqH7wEsYkRsQ1CsrOzDT_YlLmTfLruLmNur4AGsBmZmWXR1jDqLMoNUMUh2pKQ5ZbiPNeKQH95IpwlGPD8HgkRYDj72cGCWCRppOYql9N6FCS8BnzZ6fvu6WAw6JWx-XBXby_neXHcIvkUK2oPIbXMry2N1OuzLqq7-ed5khz5Z</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Array antenna design system and method based on deep reinforcement learning in complex environment</title><source>esp@cenet</source><creator>JIN CHENG ; LYU QIHAO ; CAO KAIQI ; ZHANG BINCHAO</creator><creatorcontrib>JIN CHENG ; LYU QIHAO ; CAO KAIQI ; ZHANG BINCHAO</creatorcontrib><description>The invention discloses an intelligent array antenna design system and method based on deep reinforcement learning in a complex environment, relates to the technical field of radar communication, and can better solve the intelligent optimization problem of the radiation performance of an array antenna in the complex environment. The system comprises an execution module and an evaluation module. The execution module is used for simulating the radiation performance of the array antenna in an actual environment, and comprises an array antenna simulation unit and a working environment simulation unit. The evaluation module comprises an algorithm unit and a data interface, and the algorithm unit executes a phase regulation and control algorithm based on deep reinforcement learning and outputs phase distribution of corresponding array antennas. The execution module pre-processes radiation performance data of the simulated array antenna and then sends the radiation performance data to the algorithm unit through the</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230704&amp;DB=EPODOC&amp;CC=CN&amp;NR=116384213A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230704&amp;DB=EPODOC&amp;CC=CN&amp;NR=116384213A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>JIN CHENG</creatorcontrib><creatorcontrib>LYU QIHAO</creatorcontrib><creatorcontrib>CAO KAIQI</creatorcontrib><creatorcontrib>ZHANG BINCHAO</creatorcontrib><title>Array antenna design system and method based on deep reinforcement learning in complex environment</title><description>The invention discloses an intelligent array antenna design system and method based on deep reinforcement learning in a complex environment, relates to the technical field of radar communication, and can better solve the intelligent optimization problem of the radiation performance of an array antenna in the complex environment. The system comprises an execution module and an evaluation module. The execution module is used for simulating the radiation performance of the array antenna in an actual environment, and comprises an array antenna simulation unit and a working environment simulation unit. The evaluation module comprises an algorithm unit and a data interface, and the algorithm unit executes a phase regulation and control algorithm based on deep reinforcement learning and outputs phase distribution of corresponding array antennas. The execution module pre-processes radiation performance data of the simulated array antenna and then sends the radiation performance data to the algorithm unit through the</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNijEKwkAUBdNYiHqH7wEsYkRsQ1CsrOzDT_YlLmTfLruLmNur4AGsBmZmWXR1jDqLMoNUMUh2pKQ5ZbiPNeKQH95IpwlGPD8HgkRYDj72cGCWCRppOYql9N6FCS8BnzZ6fvu6WAw6JWx-XBXby_neXHcIvkUK2oPIbXMry2N1OuzLqq7-ed5khz5Z</recordid><startdate>20230704</startdate><enddate>20230704</enddate><creator>JIN CHENG</creator><creator>LYU QIHAO</creator><creator>CAO KAIQI</creator><creator>ZHANG BINCHAO</creator><scope>EVB</scope></search><sort><creationdate>20230704</creationdate><title>Array antenna design system and method based on deep reinforcement learning in complex environment</title><author>JIN CHENG ; LYU QIHAO ; CAO KAIQI ; ZHANG BINCHAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116384213A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>JIN CHENG</creatorcontrib><creatorcontrib>LYU QIHAO</creatorcontrib><creatorcontrib>CAO KAIQI</creatorcontrib><creatorcontrib>ZHANG BINCHAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>JIN CHENG</au><au>LYU QIHAO</au><au>CAO KAIQI</au><au>ZHANG BINCHAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Array antenna design system and method based on deep reinforcement learning in complex environment</title><date>2023-07-04</date><risdate>2023</risdate><abstract>The invention discloses an intelligent array antenna design system and method based on deep reinforcement learning in a complex environment, relates to the technical field of radar communication, and can better solve the intelligent optimization problem of the radiation performance of an array antenna in the complex environment. The system comprises an execution module and an evaluation module. The execution module is used for simulating the radiation performance of the array antenna in an actual environment, and comprises an array antenna simulation unit and a working environment simulation unit. The evaluation module comprises an algorithm unit and a data interface, and the algorithm unit executes a phase regulation and control algorithm based on deep reinforcement learning and outputs phase distribution of corresponding array antennas. The execution module pre-processes radiation performance data of the simulated array antenna and then sends the radiation performance data to the algorithm unit through the</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116384213A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Array antenna design system and method based on deep reinforcement learning in complex environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A18%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=JIN%20CHENG&rft.date=2023-07-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116384213A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true