Law text multi-hop reading understanding method based on asynchronous hierarchical graph neural network

The invention provides a legal text multi-hop reading understanding method based on an asynchronous hierarchical graph neural network, and the method comprises the following steps: carrying out the fragmentation of a legal text, inputting the fragmented legal text into a pre-training model, and carr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: JIA HAITAO, LIU TONG, ZHANG MIN, TANG XIAOLONG, ZHOU HUANLAI, QIAO LEIYA, ZENG LIANG, LI JIAWEI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator JIA HAITAO
LIU TONG
ZHANG MIN
TANG XIAOLONG
ZHOU HUANLAI
QIAO LEIYA
ZENG LIANG
LI JIAWEI
description The invention provides a legal text multi-hop reading understanding method based on an asynchronous hierarchical graph neural network, and the method comprises the following steps: carrying out the fragmentation of a legal text, inputting the fragmented legal text into a pre-training model, and carrying out the coding; performing global information enhancement on the embedded vectors of the fragmented text segments through a Memory Attention module; after the problem is also sent to the coding layer, the enhanced context information and the embedding vector of the problem are subjected to bidirectional attention to obtain a context and problem bidirectional coding vector; the context and problem bidirectional coding vectors are asynchronously updated in each layer through an asynchronous hierarchical graph network multi-hop reasoning module; and obtaining answers and clue sentences of the target and a whole reasoning path through a multi-task module. According to the method, the accuracy of a machine reading
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116383336A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116383336A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116383336A3</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEuDqK-w_kAHUpAXKUoDuLkXs7kbILtXbgkVN_eIj6A088H_7LqLzhBpleGsQw51F4iKKEL3ENhR5oy8lcjZS8O7pjIgTBgerP1KiwlgQ-kqNYHiwP0itEDU9EZTHkSfa6rxQOHRJtfV9X2dLy155qidJQiWprPrr02zc7sjTG7g_nn-QAP10C1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Law text multi-hop reading understanding method based on asynchronous hierarchical graph neural network</title><source>esp@cenet</source><creator>JIA HAITAO ; LIU TONG ; ZHANG MIN ; TANG XIAOLONG ; ZHOU HUANLAI ; QIAO LEIYA ; ZENG LIANG ; LI JIAWEI</creator><creatorcontrib>JIA HAITAO ; LIU TONG ; ZHANG MIN ; TANG XIAOLONG ; ZHOU HUANLAI ; QIAO LEIYA ; ZENG LIANG ; LI JIAWEI</creatorcontrib><description>The invention provides a legal text multi-hop reading understanding method based on an asynchronous hierarchical graph neural network, and the method comprises the following steps: carrying out the fragmentation of a legal text, inputting the fragmented legal text into a pre-training model, and carrying out the coding; performing global information enhancement on the embedded vectors of the fragmented text segments through a Memory Attention module; after the problem is also sent to the coding layer, the enhanced context information and the embedding vector of the problem are subjected to bidirectional attention to obtain a context and problem bidirectional coding vector; the context and problem bidirectional coding vectors are asynchronously updated in each layer through an asynchronous hierarchical graph network multi-hop reasoning module; and obtaining answers and clue sentences of the target and a whole reasoning path through a multi-task module. According to the method, the accuracy of a machine reading</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230704&amp;DB=EPODOC&amp;CC=CN&amp;NR=116383336A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230704&amp;DB=EPODOC&amp;CC=CN&amp;NR=116383336A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>JIA HAITAO</creatorcontrib><creatorcontrib>LIU TONG</creatorcontrib><creatorcontrib>ZHANG MIN</creatorcontrib><creatorcontrib>TANG XIAOLONG</creatorcontrib><creatorcontrib>ZHOU HUANLAI</creatorcontrib><creatorcontrib>QIAO LEIYA</creatorcontrib><creatorcontrib>ZENG LIANG</creatorcontrib><creatorcontrib>LI JIAWEI</creatorcontrib><title>Law text multi-hop reading understanding method based on asynchronous hierarchical graph neural network</title><description>The invention provides a legal text multi-hop reading understanding method based on an asynchronous hierarchical graph neural network, and the method comprises the following steps: carrying out the fragmentation of a legal text, inputting the fragmented legal text into a pre-training model, and carrying out the coding; performing global information enhancement on the embedded vectors of the fragmented text segments through a Memory Attention module; after the problem is also sent to the coding layer, the enhanced context information and the embedding vector of the problem are subjected to bidirectional attention to obtain a context and problem bidirectional coding vector; the context and problem bidirectional coding vectors are asynchronously updated in each layer through an asynchronous hierarchical graph network multi-hop reasoning module; and obtaining answers and clue sentences of the target and a whole reasoning path through a multi-task module. According to the method, the accuracy of a machine reading</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAQgOEuDqK-w_kAHUpAXKUoDuLkXs7kbILtXbgkVN_eIj6A088H_7LqLzhBpleGsQw51F4iKKEL3ENhR5oy8lcjZS8O7pjIgTBgerP1KiwlgQ-kqNYHiwP0itEDU9EZTHkSfa6rxQOHRJtfV9X2dLy155qidJQiWprPrr02zc7sjTG7g_nn-QAP10C1</recordid><startdate>20230704</startdate><enddate>20230704</enddate><creator>JIA HAITAO</creator><creator>LIU TONG</creator><creator>ZHANG MIN</creator><creator>TANG XIAOLONG</creator><creator>ZHOU HUANLAI</creator><creator>QIAO LEIYA</creator><creator>ZENG LIANG</creator><creator>LI JIAWEI</creator><scope>EVB</scope></search><sort><creationdate>20230704</creationdate><title>Law text multi-hop reading understanding method based on asynchronous hierarchical graph neural network</title><author>JIA HAITAO ; LIU TONG ; ZHANG MIN ; TANG XIAOLONG ; ZHOU HUANLAI ; QIAO LEIYA ; ZENG LIANG ; LI JIAWEI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116383336A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>JIA HAITAO</creatorcontrib><creatorcontrib>LIU TONG</creatorcontrib><creatorcontrib>ZHANG MIN</creatorcontrib><creatorcontrib>TANG XIAOLONG</creatorcontrib><creatorcontrib>ZHOU HUANLAI</creatorcontrib><creatorcontrib>QIAO LEIYA</creatorcontrib><creatorcontrib>ZENG LIANG</creatorcontrib><creatorcontrib>LI JIAWEI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>JIA HAITAO</au><au>LIU TONG</au><au>ZHANG MIN</au><au>TANG XIAOLONG</au><au>ZHOU HUANLAI</au><au>QIAO LEIYA</au><au>ZENG LIANG</au><au>LI JIAWEI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Law text multi-hop reading understanding method based on asynchronous hierarchical graph neural network</title><date>2023-07-04</date><risdate>2023</risdate><abstract>The invention provides a legal text multi-hop reading understanding method based on an asynchronous hierarchical graph neural network, and the method comprises the following steps: carrying out the fragmentation of a legal text, inputting the fragmented legal text into a pre-training model, and carrying out the coding; performing global information enhancement on the embedded vectors of the fragmented text segments through a Memory Attention module; after the problem is also sent to the coding layer, the enhanced context information and the embedding vector of the problem are subjected to bidirectional attention to obtain a context and problem bidirectional coding vector; the context and problem bidirectional coding vectors are asynchronously updated in each layer through an asynchronous hierarchical graph network multi-hop reasoning module; and obtaining answers and clue sentences of the target and a whole reasoning path through a multi-task module. According to the method, the accuracy of a machine reading</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116383336A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Law text multi-hop reading understanding method based on asynchronous hierarchical graph neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A50%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=JIA%20HAITAO&rft.date=2023-07-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116383336A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true