Method for identifying and quantifying predictive geography characterization of brain spontaneous activity

The invention provides a method for identifying and quantifying predictive pattern characterization of brain spontaneous activity. Comprising the following steps: based on functional magnetic resonance image data in a resting state, adopting a time-varying dynamic analysis method to identify a dynam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LI SICHANG, LI ZHIPENG, LIANG XIA
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LI SICHANG
LI ZHIPENG
LIANG XIA
description The invention provides a method for identifying and quantifying predictive pattern characterization of brain spontaneous activity. Comprising the following steps: based on functional magnetic resonance image data in a resting state, adopting a time-varying dynamic analysis method to identify a dynamic state of brain spontaneous activity, and based on mode similarity analysis and a subsequent representation model, constructing a predictive representation map M, and meanwhile, adopting dimensionality reduction and clustering algorithms to obtain a two-dimensional space of representation distribution in a target state, mapping the predictive characterization map M into the space to realize visualization of the perception domain of the target state; and detecting and quantifying predictive offset in the internal transfer process of the target state by using two mathematical measurement design algorithms of kurtosis and skewness to obtain a predictive offset value of the brain spontaneous activity at an individual
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116363404A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116363404A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116363404A3</originalsourceid><addsrcrecordid>eNqNizEKwkAQANNYiPqH9QGCISG9BMVGK_uw3u0lK7J73m2E-HoRxNpqGJiZF7cT2aAegiZgT2IcJpYeUDw8Rvx5TOTZGT8JetI-YRwmcAMmdEaJX2isAhrgmpAFclQxFNIxA342tmlZzALeM62-XBTrw_7SHjcUtaMc0ZGQde25LJuqqeptvav-ad5ItEJ6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Method for identifying and quantifying predictive geography characterization of brain spontaneous activity</title><source>esp@cenet</source><creator>LI SICHANG ; LI ZHIPENG ; LIANG XIA</creator><creatorcontrib>LI SICHANG ; LI ZHIPENG ; LIANG XIA</creatorcontrib><description>The invention provides a method for identifying and quantifying predictive pattern characterization of brain spontaneous activity. Comprising the following steps: based on functional magnetic resonance image data in a resting state, adopting a time-varying dynamic analysis method to identify a dynamic state of brain spontaneous activity, and based on mode similarity analysis and a subsequent representation model, constructing a predictive representation map M, and meanwhile, adopting dimensionality reduction and clustering algorithms to obtain a two-dimensional space of representation distribution in a target state, mapping the predictive characterization map M into the space to realize visualization of the perception domain of the target state; and detecting and quantifying predictive offset in the internal transfer process of the target state by using two mathematical measurement design algorithms of kurtosis and skewness to obtain a predictive offset value of the brain spontaneous activity at an individual</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230630&amp;DB=EPODOC&amp;CC=CN&amp;NR=116363404A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230630&amp;DB=EPODOC&amp;CC=CN&amp;NR=116363404A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LI SICHANG</creatorcontrib><creatorcontrib>LI ZHIPENG</creatorcontrib><creatorcontrib>LIANG XIA</creatorcontrib><title>Method for identifying and quantifying predictive geography characterization of brain spontaneous activity</title><description>The invention provides a method for identifying and quantifying predictive pattern characterization of brain spontaneous activity. Comprising the following steps: based on functional magnetic resonance image data in a resting state, adopting a time-varying dynamic analysis method to identify a dynamic state of brain spontaneous activity, and based on mode similarity analysis and a subsequent representation model, constructing a predictive representation map M, and meanwhile, adopting dimensionality reduction and clustering algorithms to obtain a two-dimensional space of representation distribution in a target state, mapping the predictive characterization map M into the space to realize visualization of the perception domain of the target state; and detecting and quantifying predictive offset in the internal transfer process of the target state by using two mathematical measurement design algorithms of kurtosis and skewness to obtain a predictive offset value of the brain spontaneous activity at an individual</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNizEKwkAQANNYiPqH9QGCISG9BMVGK_uw3u0lK7J73m2E-HoRxNpqGJiZF7cT2aAegiZgT2IcJpYeUDw8Rvx5TOTZGT8JetI-YRwmcAMmdEaJX2isAhrgmpAFclQxFNIxA342tmlZzALeM62-XBTrw_7SHjcUtaMc0ZGQde25LJuqqeptvav-ad5ItEJ6</recordid><startdate>20230630</startdate><enddate>20230630</enddate><creator>LI SICHANG</creator><creator>LI ZHIPENG</creator><creator>LIANG XIA</creator><scope>EVB</scope></search><sort><creationdate>20230630</creationdate><title>Method for identifying and quantifying predictive geography characterization of brain spontaneous activity</title><author>LI SICHANG ; LI ZHIPENG ; LIANG XIA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116363404A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LI SICHANG</creatorcontrib><creatorcontrib>LI ZHIPENG</creatorcontrib><creatorcontrib>LIANG XIA</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LI SICHANG</au><au>LI ZHIPENG</au><au>LIANG XIA</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Method for identifying and quantifying predictive geography characterization of brain spontaneous activity</title><date>2023-06-30</date><risdate>2023</risdate><abstract>The invention provides a method for identifying and quantifying predictive pattern characterization of brain spontaneous activity. Comprising the following steps: based on functional magnetic resonance image data in a resting state, adopting a time-varying dynamic analysis method to identify a dynamic state of brain spontaneous activity, and based on mode similarity analysis and a subsequent representation model, constructing a predictive representation map M, and meanwhile, adopting dimensionality reduction and clustering algorithms to obtain a two-dimensional space of representation distribution in a target state, mapping the predictive characterization map M into the space to realize visualization of the perception domain of the target state; and detecting and quantifying predictive offset in the internal transfer process of the target state by using two mathematical measurement design algorithms of kurtosis and skewness to obtain a predictive offset value of the brain spontaneous activity at an individual</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116363404A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Method for identifying and quantifying predictive geography characterization of brain spontaneous activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A01%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LI%20SICHANG&rft.date=2023-06-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116363404A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true