Intelligent determination method for earthquake landslide disaster-inducing factors in high-intensity area

The invention relates to the technical field of ecogeology, and discloses an intelligent determination method for earthquake landslide disaster-inducing factors in a high-intensity area, which can calculate prediction precision values of all earthquake landslide risk evaluation models in batches by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: XU PEIYI, ZHANG YINGBIN, YU QIANGSHAN, LI DEJIAN, LIU JING, ZENG YING
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator XU PEIYI
ZHANG YINGBIN
YU QIANGSHAN
LI DEJIAN
LIU JING
ZENG YING
description The invention relates to the technical field of ecogeology, and discloses an intelligent determination method for earthquake landslide disaster-inducing factors in a high-intensity area, which can calculate prediction precision values of all earthquake landslide risk evaluation models in batches by taking disaster-inducing factors in all combination modes as model input variables. And obtaining a disaster-inducing factor combination when the prediction precision value is maximum. According to the high-intensity area earthquake landslide risk evaluation model based on statistics and a machine learning method, appropriate disaster-inducing factors are selected as input variables of the model, and a foundation is laid for quantitative evaluation of the high-intensity area earthquake landslide risk. 本发明涉及生态地质技术领域,公开了一种高烈度区地震滑坡致灾因子的智能确定方法,可以将所有组合方式下的致灾因子作为模型输入变量,批量计算所有地震滑坡危险性评价模型的预测精度值,从而得到预测精度值最大时的致灾因子组合。基于统计学和机器学习方法的高烈度区地震滑坡危险性评价模型,选择合适的致灾因子作为模型的输入变量变量为高烈度区地震滑坡危险性定量评价奠定了基础。
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116362619A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116362619A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116362619A3</originalsourceid><addsrcrecordid>eNqNizEOgkAQRWksjHqH8QAUSEJiaYhGGyt7MmE_MLrM4u5QeHspPIDVK9576-x5U4P30kONHAxxFGWToDTChuCoC5HA0Yb3zC-QZ3XJiwM5SZyWIRd1cyvaU8ethZhIlAbph0UYNIl9iCN4m6069gm7HzfZ_nJ-1NccU2iQJm6hsKa-F0VVVoeqOJ7Kf5ovNeBCHw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Intelligent determination method for earthquake landslide disaster-inducing factors in high-intensity area</title><source>esp@cenet</source><creator>XU PEIYI ; ZHANG YINGBIN ; YU QIANGSHAN ; LI DEJIAN ; LIU JING ; ZENG YING</creator><creatorcontrib>XU PEIYI ; ZHANG YINGBIN ; YU QIANGSHAN ; LI DEJIAN ; LIU JING ; ZENG YING</creatorcontrib><description>The invention relates to the technical field of ecogeology, and discloses an intelligent determination method for earthquake landslide disaster-inducing factors in a high-intensity area, which can calculate prediction precision values of all earthquake landslide risk evaluation models in batches by taking disaster-inducing factors in all combination modes as model input variables. And obtaining a disaster-inducing factor combination when the prediction precision value is maximum. According to the high-intensity area earthquake landslide risk evaluation model based on statistics and a machine learning method, appropriate disaster-inducing factors are selected as input variables of the model, and a foundation is laid for quantitative evaluation of the high-intensity area earthquake landslide risk. 本发明涉及生态地质技术领域,公开了一种高烈度区地震滑坡致灾因子的智能确定方法,可以将所有组合方式下的致灾因子作为模型输入变量,批量计算所有地震滑坡危险性评价模型的预测精度值,从而得到预测精度值最大时的致灾因子组合。基于统计学和机器学习方法的高烈度区地震滑坡危险性评价模型,选择合适的致灾因子作为模型的输入变量变量为高烈度区地震滑坡危险性定量评价奠定了基础。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230630&amp;DB=EPODOC&amp;CC=CN&amp;NR=116362619A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230630&amp;DB=EPODOC&amp;CC=CN&amp;NR=116362619A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XU PEIYI</creatorcontrib><creatorcontrib>ZHANG YINGBIN</creatorcontrib><creatorcontrib>YU QIANGSHAN</creatorcontrib><creatorcontrib>LI DEJIAN</creatorcontrib><creatorcontrib>LIU JING</creatorcontrib><creatorcontrib>ZENG YING</creatorcontrib><title>Intelligent determination method for earthquake landslide disaster-inducing factors in high-intensity area</title><description>The invention relates to the technical field of ecogeology, and discloses an intelligent determination method for earthquake landslide disaster-inducing factors in a high-intensity area, which can calculate prediction precision values of all earthquake landslide risk evaluation models in batches by taking disaster-inducing factors in all combination modes as model input variables. And obtaining a disaster-inducing factor combination when the prediction precision value is maximum. According to the high-intensity area earthquake landslide risk evaluation model based on statistics and a machine learning method, appropriate disaster-inducing factors are selected as input variables of the model, and a foundation is laid for quantitative evaluation of the high-intensity area earthquake landslide risk. 本发明涉及生态地质技术领域,公开了一种高烈度区地震滑坡致灾因子的智能确定方法,可以将所有组合方式下的致灾因子作为模型输入变量,批量计算所有地震滑坡危险性评价模型的预测精度值,从而得到预测精度值最大时的致灾因子组合。基于统计学和机器学习方法的高烈度区地震滑坡危险性评价模型,选择合适的致灾因子作为模型的输入变量变量为高烈度区地震滑坡危险性定量评价奠定了基础。</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNizEOgkAQRWksjHqH8QAUSEJiaYhGGyt7MmE_MLrM4u5QeHspPIDVK9576-x5U4P30kONHAxxFGWToDTChuCoC5HA0Yb3zC-QZ3XJiwM5SZyWIRd1cyvaU8ethZhIlAbph0UYNIl9iCN4m6069gm7HzfZ_nJ-1NccU2iQJm6hsKa-F0VVVoeqOJ7Kf5ovNeBCHw</recordid><startdate>20230630</startdate><enddate>20230630</enddate><creator>XU PEIYI</creator><creator>ZHANG YINGBIN</creator><creator>YU QIANGSHAN</creator><creator>LI DEJIAN</creator><creator>LIU JING</creator><creator>ZENG YING</creator><scope>EVB</scope></search><sort><creationdate>20230630</creationdate><title>Intelligent determination method for earthquake landslide disaster-inducing factors in high-intensity area</title><author>XU PEIYI ; ZHANG YINGBIN ; YU QIANGSHAN ; LI DEJIAN ; LIU JING ; ZENG YING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116362619A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>XU PEIYI</creatorcontrib><creatorcontrib>ZHANG YINGBIN</creatorcontrib><creatorcontrib>YU QIANGSHAN</creatorcontrib><creatorcontrib>LI DEJIAN</creatorcontrib><creatorcontrib>LIU JING</creatorcontrib><creatorcontrib>ZENG YING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XU PEIYI</au><au>ZHANG YINGBIN</au><au>YU QIANGSHAN</au><au>LI DEJIAN</au><au>LIU JING</au><au>ZENG YING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Intelligent determination method for earthquake landslide disaster-inducing factors in high-intensity area</title><date>2023-06-30</date><risdate>2023</risdate><abstract>The invention relates to the technical field of ecogeology, and discloses an intelligent determination method for earthquake landslide disaster-inducing factors in a high-intensity area, which can calculate prediction precision values of all earthquake landslide risk evaluation models in batches by taking disaster-inducing factors in all combination modes as model input variables. And obtaining a disaster-inducing factor combination when the prediction precision value is maximum. According to the high-intensity area earthquake landslide risk evaluation model based on statistics and a machine learning method, appropriate disaster-inducing factors are selected as input variables of the model, and a foundation is laid for quantitative evaluation of the high-intensity area earthquake landslide risk. 本发明涉及生态地质技术领域,公开了一种高烈度区地震滑坡致灾因子的智能确定方法,可以将所有组合方式下的致灾因子作为模型输入变量,批量计算所有地震滑坡危险性评价模型的预测精度值,从而得到预测精度值最大时的致灾因子组合。基于统计学和机器学习方法的高烈度区地震滑坡危险性评价模型,选择合适的致灾因子作为模型的输入变量变量为高烈度区地震滑坡危险性定量评价奠定了基础。</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116362619A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Intelligent determination method for earthquake landslide disaster-inducing factors in high-intensity area
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A49%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XU%20PEIYI&rft.date=2023-06-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116362619A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true