Flexible deep reinforcement learning building load demand response method considering participation of energy storage
The invention discloses a flexible deep reinforcement learning building load demand response method considering energy storage participation, and the method mainly comprises the following steps: firstly, collecting historical load data and energy storage system data of multiple types of buildings, b...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | XIE DONGRI MING DONGYUE LIU JUN PENG TAO DING LI NIE YONGXIN FU CHEN FAN LIPAN |
description | The invention discloses a flexible deep reinforcement learning building load demand response method considering energy storage participation, and the method mainly comprises the following steps: firstly, collecting historical load data and energy storage system data of multiple types of buildings, building a load model, and extracting an action space and an observation space; secondly, designing a reward function, and establishing a Markov process model for the demand response process of the building; thirdly, establishing an action value network, a target value network and a strategy network; and finally, historical load data and energy storage system data are used to train the network model, and the trained network can output a load action sequence and a load adjustable potential according to the load state of the current building. According to the method, the situation that the dimensionality of a demand response action space can be increased due to participation of an energy storage system, discretization |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116362471A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116362471A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116362471A3</originalsourceid><addsrcrecordid>eNqNzDEKwkAUBNA0FqLe4XsAixiJtQSDlZV92GQn8cPm_2V3A3p7V_AAVjMDj1kXS-vw4t6BLOApgGXUMGCGJHIwQVgm6hd29lucGpvlbMRmG71KBM1IT7U05MEW4eu8CYkH9iaxCulIEITpTTFpMBO2xWo0LmL3y02xb6-P5naA1y7fmiH71DX3sqyr-ng6l5fqH_MBWLhGKw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Flexible deep reinforcement learning building load demand response method considering participation of energy storage</title><source>esp@cenet</source><creator>XIE DONGRI ; MING DONGYUE ; LIU JUN ; PENG TAO ; DING LI ; NIE YONGXIN ; FU CHEN ; FAN LIPAN</creator><creatorcontrib>XIE DONGRI ; MING DONGYUE ; LIU JUN ; PENG TAO ; DING LI ; NIE YONGXIN ; FU CHEN ; FAN LIPAN</creatorcontrib><description>The invention discloses a flexible deep reinforcement learning building load demand response method considering energy storage participation, and the method mainly comprises the following steps: firstly, collecting historical load data and energy storage system data of multiple types of buildings, building a load model, and extracting an action space and an observation space; secondly, designing a reward function, and establishing a Markov process model for the demand response process of the building; thirdly, establishing an action value network, a target value network and a strategy network; and finally, historical load data and energy storage system data are used to train the network model, and the trained network can output a load action sequence and a load adjustable potential according to the load state of the current building. According to the method, the situation that the dimensionality of a demand response action space can be increased due to participation of an energy storage system, discretization</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230630&DB=EPODOC&CC=CN&NR=116362471A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230630&DB=EPODOC&CC=CN&NR=116362471A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XIE DONGRI</creatorcontrib><creatorcontrib>MING DONGYUE</creatorcontrib><creatorcontrib>LIU JUN</creatorcontrib><creatorcontrib>PENG TAO</creatorcontrib><creatorcontrib>DING LI</creatorcontrib><creatorcontrib>NIE YONGXIN</creatorcontrib><creatorcontrib>FU CHEN</creatorcontrib><creatorcontrib>FAN LIPAN</creatorcontrib><title>Flexible deep reinforcement learning building load demand response method considering participation of energy storage</title><description>The invention discloses a flexible deep reinforcement learning building load demand response method considering energy storage participation, and the method mainly comprises the following steps: firstly, collecting historical load data and energy storage system data of multiple types of buildings, building a load model, and extracting an action space and an observation space; secondly, designing a reward function, and establishing a Markov process model for the demand response process of the building; thirdly, establishing an action value network, a target value network and a strategy network; and finally, historical load data and energy storage system data are used to train the network model, and the trained network can output a load action sequence and a load adjustable potential according to the load state of the current building. According to the method, the situation that the dimensionality of a demand response action space can be increased due to participation of an energy storage system, discretization</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzDEKwkAUBNA0FqLe4XsAixiJtQSDlZV92GQn8cPm_2V3A3p7V_AAVjMDj1kXS-vw4t6BLOApgGXUMGCGJHIwQVgm6hd29lucGpvlbMRmG71KBM1IT7U05MEW4eu8CYkH9iaxCulIEITpTTFpMBO2xWo0LmL3y02xb6-P5naA1y7fmiH71DX3sqyr-ng6l5fqH_MBWLhGKw</recordid><startdate>20230630</startdate><enddate>20230630</enddate><creator>XIE DONGRI</creator><creator>MING DONGYUE</creator><creator>LIU JUN</creator><creator>PENG TAO</creator><creator>DING LI</creator><creator>NIE YONGXIN</creator><creator>FU CHEN</creator><creator>FAN LIPAN</creator><scope>EVB</scope></search><sort><creationdate>20230630</creationdate><title>Flexible deep reinforcement learning building load demand response method considering participation of energy storage</title><author>XIE DONGRI ; MING DONGYUE ; LIU JUN ; PENG TAO ; DING LI ; NIE YONGXIN ; FU CHEN ; FAN LIPAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116362471A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>XIE DONGRI</creatorcontrib><creatorcontrib>MING DONGYUE</creatorcontrib><creatorcontrib>LIU JUN</creatorcontrib><creatorcontrib>PENG TAO</creatorcontrib><creatorcontrib>DING LI</creatorcontrib><creatorcontrib>NIE YONGXIN</creatorcontrib><creatorcontrib>FU CHEN</creatorcontrib><creatorcontrib>FAN LIPAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XIE DONGRI</au><au>MING DONGYUE</au><au>LIU JUN</au><au>PENG TAO</au><au>DING LI</au><au>NIE YONGXIN</au><au>FU CHEN</au><au>FAN LIPAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Flexible deep reinforcement learning building load demand response method considering participation of energy storage</title><date>2023-06-30</date><risdate>2023</risdate><abstract>The invention discloses a flexible deep reinforcement learning building load demand response method considering energy storage participation, and the method mainly comprises the following steps: firstly, collecting historical load data and energy storage system data of multiple types of buildings, building a load model, and extracting an action space and an observation space; secondly, designing a reward function, and establishing a Markov process model for the demand response process of the building; thirdly, establishing an action value network, a target value network and a strategy network; and finally, historical load data and energy storage system data are used to train the network model, and the trained network can output a load action sequence and a load adjustable potential according to the load state of the current building. According to the method, the situation that the dimensionality of a demand response action space can be increased due to participation of an energy storage system, discretization</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN116362471A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | Flexible deep reinforcement learning building load demand response method considering participation of energy storage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A55%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XIE%20DONGRI&rft.date=2023-06-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116362471A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |