Multi-core DSP-oriented parallel computing resource self-organizing scheduling method and system

The invention discloses a multi-core DSP-oriented parallel computing resource self-organizing scheduling method and system, and belongs to the field of embedded distributed computing. According to the parallel computing resource self-organizing scheduling method, firstly, system initialization is ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: JIAO MIAO, BAO DAERHAN, GAO HONGYU, GUO FENGFENG, HAN YUANDONG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator JIAO MIAO
BAO DAERHAN
GAO HONGYU
GUO FENGFENG
HAN YUANDONG
description The invention discloses a multi-core DSP-oriented parallel computing resource self-organizing scheduling method and system, and belongs to the field of embedded distributed computing. According to the parallel computing resource self-organizing scheduling method, firstly, system initialization is executed, and it is guaranteed that a system enters a stable state; then starting a user parallel computing task, and starting to create a parallel task and a data block; after creation is completed, calculation is started when parallel running is started, a system is switched to a parallel scheduling engine, tasks and data blocks are started to be scheduled to an acceleration core, and after the acceleration core receives corresponding requests, corresponding modules are started to be executed to complete task buffer area initialization, task loading and repositioning, data block calculation and task context reduction. After calculation and reduction of all the data blocks are completed, the main control core recycl
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116360941A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116360941A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116360941A3</originalsourceid><addsrcrecordid>eNqNikEKwjAUBbtxIeodvgcIWCoFl1IVN4qg-xqS1zaQJiE_WejpteABXM3AzLx4XrJNRigfQYf7Tfho4BI0BRmltbCk_BhyMq6nCPY5KhDDdt-zl868p8BqgM520hFp8Jqk08QvThiXxayTlrH6cVGsT8dHcxYIvgUHqeCQ2uZalnVVb3bbcl_983wA91A9zQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Multi-core DSP-oriented parallel computing resource self-organizing scheduling method and system</title><source>esp@cenet</source><creator>JIAO MIAO ; BAO DAERHAN ; GAO HONGYU ; GUO FENGFENG ; HAN YUANDONG</creator><creatorcontrib>JIAO MIAO ; BAO DAERHAN ; GAO HONGYU ; GUO FENGFENG ; HAN YUANDONG</creatorcontrib><description>The invention discloses a multi-core DSP-oriented parallel computing resource self-organizing scheduling method and system, and belongs to the field of embedded distributed computing. According to the parallel computing resource self-organizing scheduling method, firstly, system initialization is executed, and it is guaranteed that a system enters a stable state; then starting a user parallel computing task, and starting to create a parallel task and a data block; after creation is completed, calculation is started when parallel running is started, a system is switched to a parallel scheduling engine, tasks and data blocks are started to be scheduled to an acceleration core, and after the acceleration core receives corresponding requests, corresponding modules are started to be executed to complete task buffer area initialization, task loading and repositioning, data block calculation and task context reduction. After calculation and reduction of all the data blocks are completed, the main control core recycl</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230630&amp;DB=EPODOC&amp;CC=CN&amp;NR=116360941A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230630&amp;DB=EPODOC&amp;CC=CN&amp;NR=116360941A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>JIAO MIAO</creatorcontrib><creatorcontrib>BAO DAERHAN</creatorcontrib><creatorcontrib>GAO HONGYU</creatorcontrib><creatorcontrib>GUO FENGFENG</creatorcontrib><creatorcontrib>HAN YUANDONG</creatorcontrib><title>Multi-core DSP-oriented parallel computing resource self-organizing scheduling method and system</title><description>The invention discloses a multi-core DSP-oriented parallel computing resource self-organizing scheduling method and system, and belongs to the field of embedded distributed computing. According to the parallel computing resource self-organizing scheduling method, firstly, system initialization is executed, and it is guaranteed that a system enters a stable state; then starting a user parallel computing task, and starting to create a parallel task and a data block; after creation is completed, calculation is started when parallel running is started, a system is switched to a parallel scheduling engine, tasks and data blocks are started to be scheduled to an acceleration core, and after the acceleration core receives corresponding requests, corresponding modules are started to be executed to complete task buffer area initialization, task loading and repositioning, data block calculation and task context reduction. After calculation and reduction of all the data blocks are completed, the main control core recycl</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNikEKwjAUBbtxIeodvgcIWCoFl1IVN4qg-xqS1zaQJiE_WejpteABXM3AzLx4XrJNRigfQYf7Tfho4BI0BRmltbCk_BhyMq6nCPY5KhDDdt-zl868p8BqgM520hFp8Jqk08QvThiXxayTlrH6cVGsT8dHcxYIvgUHqeCQ2uZalnVVb3bbcl_983wA91A9zQ</recordid><startdate>20230630</startdate><enddate>20230630</enddate><creator>JIAO MIAO</creator><creator>BAO DAERHAN</creator><creator>GAO HONGYU</creator><creator>GUO FENGFENG</creator><creator>HAN YUANDONG</creator><scope>EVB</scope></search><sort><creationdate>20230630</creationdate><title>Multi-core DSP-oriented parallel computing resource self-organizing scheduling method and system</title><author>JIAO MIAO ; BAO DAERHAN ; GAO HONGYU ; GUO FENGFENG ; HAN YUANDONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116360941A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>JIAO MIAO</creatorcontrib><creatorcontrib>BAO DAERHAN</creatorcontrib><creatorcontrib>GAO HONGYU</creatorcontrib><creatorcontrib>GUO FENGFENG</creatorcontrib><creatorcontrib>HAN YUANDONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>JIAO MIAO</au><au>BAO DAERHAN</au><au>GAO HONGYU</au><au>GUO FENGFENG</au><au>HAN YUANDONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Multi-core DSP-oriented parallel computing resource self-organizing scheduling method and system</title><date>2023-06-30</date><risdate>2023</risdate><abstract>The invention discloses a multi-core DSP-oriented parallel computing resource self-organizing scheduling method and system, and belongs to the field of embedded distributed computing. According to the parallel computing resource self-organizing scheduling method, firstly, system initialization is executed, and it is guaranteed that a system enters a stable state; then starting a user parallel computing task, and starting to create a parallel task and a data block; after creation is completed, calculation is started when parallel running is started, a system is switched to a parallel scheduling engine, tasks and data blocks are started to be scheduled to an acceleration core, and after the acceleration core receives corresponding requests, corresponding modules are started to be executed to complete task buffer area initialization, task loading and repositioning, data block calculation and task context reduction. After calculation and reduction of all the data blocks are completed, the main control core recycl</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116360941A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Multi-core DSP-oriented parallel computing resource self-organizing scheduling method and system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A18%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=JIAO%20MIAO&rft.date=2023-06-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116360941A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true