NB-IoT wireless resource allocation method based on NOMA and multi-agent reinforcement learning

The invention discloses an NB-IoT (Narrow Band Internet of Things) wireless resource allocation method based on NOMA (Non-Orthogonal Multiple Access) and multi-agent reinforcement learning, and aims to solve the problem of connection density maximization in a multi-user NB-IoT scene based on an NOMA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: YU JINGMING, WANG JIE, REN RONG, LUO XINPENG, LAI QIUYU, ZHU XIANGYU
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator YU JINGMING
WANG JIE
REN RONG
LUO XINPENG
LAI QIUYU
ZHU XIANGYU
description The invention discloses an NB-IoT (Narrow Band Internet of Things) wireless resource allocation method based on NOMA (Non-Orthogonal Multiple Access) and multi-agent reinforcement learning, and aims to solve the problem of connection density maximization in a multi-user NB-IoT scene based on an NOMA technology. Considering a more practical scene, different users have different QoS requirements and use different tone types. Different from a traditional heuristic algorithm, the method firstly models a joint optimization problem of power, resource block allocation and NOMA user pairing into a Markov decision process, and adopts an MAPPO, which is the most advanced multi-agent reinforcement learning algorithm, to solve the joint optimization problem. In consideration of the existing invalid actions, the invalid actions are shielded in the process of calculating the probability distribution of each action by the neural network, so that convergence is accelerated. Python3.8.15 is used on a VScode platform for syste
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116347635A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116347635A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116347635A3</originalsourceid><addsrcrecordid>eNqNi7EOgkAQBWksjPoP6wdQEBRrJBotxIaerPCAS45dcnfE3xcTP8BqMsnMOqrLc3zXit7GwcJ7cvA6uwbE1mrDwajQiDBoSy_2aGnx8vnIiaWlcbbBxNxDwjIa6XQ5x69ZsBMj_TZadWw9dj9uov31UhW3GJPW8BM3EIS6KJMkSw-nLD3m6T_NBxJ-PFY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>NB-IoT wireless resource allocation method based on NOMA and multi-agent reinforcement learning</title><source>esp@cenet</source><creator>YU JINGMING ; WANG JIE ; REN RONG ; LUO XINPENG ; LAI QIUYU ; ZHU XIANGYU</creator><creatorcontrib>YU JINGMING ; WANG JIE ; REN RONG ; LUO XINPENG ; LAI QIUYU ; ZHU XIANGYU</creatorcontrib><description>The invention discloses an NB-IoT (Narrow Band Internet of Things) wireless resource allocation method based on NOMA (Non-Orthogonal Multiple Access) and multi-agent reinforcement learning, and aims to solve the problem of connection density maximization in a multi-user NB-IoT scene based on an NOMA technology. Considering a more practical scene, different users have different QoS requirements and use different tone types. Different from a traditional heuristic algorithm, the method firstly models a joint optimization problem of power, resource block allocation and NOMA user pairing into a Markov decision process, and adopts an MAPPO, which is the most advanced multi-agent reinforcement learning algorithm, to solve the joint optimization problem. In consideration of the existing invalid actions, the invalid actions are shielded in the process of calculating the probability distribution of each action by the neural network, so that convergence is accelerated. Python3.8.15 is used on a VScode platform for syste</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; PHYSICS ; WIRELESS COMMUNICATIONS NETWORKS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230627&amp;DB=EPODOC&amp;CC=CN&amp;NR=116347635A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230627&amp;DB=EPODOC&amp;CC=CN&amp;NR=116347635A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YU JINGMING</creatorcontrib><creatorcontrib>WANG JIE</creatorcontrib><creatorcontrib>REN RONG</creatorcontrib><creatorcontrib>LUO XINPENG</creatorcontrib><creatorcontrib>LAI QIUYU</creatorcontrib><creatorcontrib>ZHU XIANGYU</creatorcontrib><title>NB-IoT wireless resource allocation method based on NOMA and multi-agent reinforcement learning</title><description>The invention discloses an NB-IoT (Narrow Band Internet of Things) wireless resource allocation method based on NOMA (Non-Orthogonal Multiple Access) and multi-agent reinforcement learning, and aims to solve the problem of connection density maximization in a multi-user NB-IoT scene based on an NOMA technology. Considering a more practical scene, different users have different QoS requirements and use different tone types. Different from a traditional heuristic algorithm, the method firstly models a joint optimization problem of power, resource block allocation and NOMA user pairing into a Markov decision process, and adopts an MAPPO, which is the most advanced multi-agent reinforcement learning algorithm, to solve the joint optimization problem. In consideration of the existing invalid actions, the invalid actions are shielded in the process of calculating the probability distribution of each action by the neural network, so that convergence is accelerated. Python3.8.15 is used on a VScode platform for syste</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>WIRELESS COMMUNICATIONS NETWORKS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi7EOgkAQBWksjPoP6wdQEBRrJBotxIaerPCAS45dcnfE3xcTP8BqMsnMOqrLc3zXit7GwcJ7cvA6uwbE1mrDwajQiDBoSy_2aGnx8vnIiaWlcbbBxNxDwjIa6XQ5x69ZsBMj_TZadWw9dj9uov31UhW3GJPW8BM3EIS6KJMkSw-nLD3m6T_NBxJ-PFY</recordid><startdate>20230627</startdate><enddate>20230627</enddate><creator>YU JINGMING</creator><creator>WANG JIE</creator><creator>REN RONG</creator><creator>LUO XINPENG</creator><creator>LAI QIUYU</creator><creator>ZHU XIANGYU</creator><scope>EVB</scope></search><sort><creationdate>20230627</creationdate><title>NB-IoT wireless resource allocation method based on NOMA and multi-agent reinforcement learning</title><author>YU JINGMING ; WANG JIE ; REN RONG ; LUO XINPENG ; LAI QIUYU ; ZHU XIANGYU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116347635A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>WIRELESS COMMUNICATIONS NETWORKS</topic><toplevel>online_resources</toplevel><creatorcontrib>YU JINGMING</creatorcontrib><creatorcontrib>WANG JIE</creatorcontrib><creatorcontrib>REN RONG</creatorcontrib><creatorcontrib>LUO XINPENG</creatorcontrib><creatorcontrib>LAI QIUYU</creatorcontrib><creatorcontrib>ZHU XIANGYU</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YU JINGMING</au><au>WANG JIE</au><au>REN RONG</au><au>LUO XINPENG</au><au>LAI QIUYU</au><au>ZHU XIANGYU</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>NB-IoT wireless resource allocation method based on NOMA and multi-agent reinforcement learning</title><date>2023-06-27</date><risdate>2023</risdate><abstract>The invention discloses an NB-IoT (Narrow Band Internet of Things) wireless resource allocation method based on NOMA (Non-Orthogonal Multiple Access) and multi-agent reinforcement learning, and aims to solve the problem of connection density maximization in a multi-user NB-IoT scene based on an NOMA technology. Considering a more practical scene, different users have different QoS requirements and use different tone types. Different from a traditional heuristic algorithm, the method firstly models a joint optimization problem of power, resource block allocation and NOMA user pairing into a Markov decision process, and adopts an MAPPO, which is the most advanced multi-agent reinforcement learning algorithm, to solve the joint optimization problem. In consideration of the existing invalid actions, the invalid actions are shielded in the process of calculating the probability distribution of each action by the neural network, so that convergence is accelerated. Python3.8.15 is used on a VScode platform for syste</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116347635A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRICITY
PHYSICS
WIRELESS COMMUNICATIONS NETWORKS
title NB-IoT wireless resource allocation method based on NOMA and multi-agent reinforcement learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T21%3A05%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YU%20JINGMING&rft.date=2023-06-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116347635A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true