Deep learning-based detection method and control system for form and quantity of sugarcane seeds in sugarcane collection box

The invention discloses a method for detecting the form and quantity of sugarcane seeds in a sugarcane collecting box based on deep learning. The method comprises the following steps: step 1, acquiring image information of the sugarcane seeds in the sugarcane collecting box by using a camera device;...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: CHU YUAN, YE YINGMIN, BYUN JOON-SEOK, ZHENG CHUANGRUI, TANG DAN, LI SHANGPING, WANG CONG, LI KAIHUA, WEN CHUNMING, LI YANG, YAN QINGLIN, ZHANG CHAO, CHEN CHENG, GAN WEIGUANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator CHU YUAN
YE YINGMIN
BYUN JOON-SEOK
ZHENG CHUANGRUI
TANG DAN
LI SHANGPING
WANG CONG
LI KAIHUA
WEN CHUNMING
LI YANG
YAN QINGLIN
ZHANG CHAO
CHEN CHENG
GAN WEIGUANG
description The invention discloses a method for detecting the form and quantity of sugarcane seeds in a sugarcane collecting box based on deep learning. The method comprises the following steps: step 1, acquiring image information of the sugarcane seeds in the sugarcane collecting box by using a camera device; step 2, calibrating the sugarcane seed image, making a data set, and dividing the data set into a training set, a verification set and a test set according to a proportion; 3, performing iterative training on the calibrated training set and verification set by using a convolutional neural network to obtain an optimal weight file, and obtaining a sugarcane seed form and seed quantity network model; and step 4, using the trained sugarcane seed form and seed quantity network model, performing prediction verification on the distributed test set, and evaluating the network model. The detection method provided by the invention has the advantages of high recognition rate and high recognition speed. A control system is fo
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116343035A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116343035A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116343035A3</originalsourceid><addsrcrecordid>eNqNjLEKwkAQRNNYiPoP6wcEDKf2EhUrK_twudvEg8tuvN2AAT9elBSWFsPAm8fMs9cRsYeINlGgNq-toAePik4DE3Sod_ZgyYNj0sQRZBTFDhpOn3Tf7TFY0qAjcAMytDY5SwiC6AUC_SDHMU7XNT-X2ayxUXA19SJbn0-38pJjzxVKbx0SalVei2JvtmZjdgfzj_MG_2NH3g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Deep learning-based detection method and control system for form and quantity of sugarcane seeds in sugarcane collection box</title><source>esp@cenet</source><creator>CHU YUAN ; YE YINGMIN ; BYUN JOON-SEOK ; ZHENG CHUANGRUI ; TANG DAN ; LI SHANGPING ; WANG CONG ; LI KAIHUA ; WEN CHUNMING ; LI YANG ; YAN QINGLIN ; ZHANG CHAO ; CHEN CHENG ; GAN WEIGUANG</creator><creatorcontrib>CHU YUAN ; YE YINGMIN ; BYUN JOON-SEOK ; ZHENG CHUANGRUI ; TANG DAN ; LI SHANGPING ; WANG CONG ; LI KAIHUA ; WEN CHUNMING ; LI YANG ; YAN QINGLIN ; ZHANG CHAO ; CHEN CHENG ; GAN WEIGUANG</creatorcontrib><description>The invention discloses a method for detecting the form and quantity of sugarcane seeds in a sugarcane collecting box based on deep learning. The method comprises the following steps: step 1, acquiring image information of the sugarcane seeds in the sugarcane collecting box by using a camera device; step 2, calibrating the sugarcane seed image, making a data set, and dividing the data set into a training set, a verification set and a test set according to a proportion; 3, performing iterative training on the calibrated training set and verification set by using a convolutional neural network to obtain an optimal weight file, and obtaining a sugarcane seed form and seed quantity network model; and step 4, using the trained sugarcane seed form and seed quantity network model, performing prediction verification on the distributed test set, and evaluating the network model. The detection method provided by the invention has the advantages of high recognition rate and high recognition speed. A control system is fo</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230627&amp;DB=EPODOC&amp;CC=CN&amp;NR=116343035A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230627&amp;DB=EPODOC&amp;CC=CN&amp;NR=116343035A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CHU YUAN</creatorcontrib><creatorcontrib>YE YINGMIN</creatorcontrib><creatorcontrib>BYUN JOON-SEOK</creatorcontrib><creatorcontrib>ZHENG CHUANGRUI</creatorcontrib><creatorcontrib>TANG DAN</creatorcontrib><creatorcontrib>LI SHANGPING</creatorcontrib><creatorcontrib>WANG CONG</creatorcontrib><creatorcontrib>LI KAIHUA</creatorcontrib><creatorcontrib>WEN CHUNMING</creatorcontrib><creatorcontrib>LI YANG</creatorcontrib><creatorcontrib>YAN QINGLIN</creatorcontrib><creatorcontrib>ZHANG CHAO</creatorcontrib><creatorcontrib>CHEN CHENG</creatorcontrib><creatorcontrib>GAN WEIGUANG</creatorcontrib><title>Deep learning-based detection method and control system for form and quantity of sugarcane seeds in sugarcane collection box</title><description>The invention discloses a method for detecting the form and quantity of sugarcane seeds in a sugarcane collecting box based on deep learning. The method comprises the following steps: step 1, acquiring image information of the sugarcane seeds in the sugarcane collecting box by using a camera device; step 2, calibrating the sugarcane seed image, making a data set, and dividing the data set into a training set, a verification set and a test set according to a proportion; 3, performing iterative training on the calibrated training set and verification set by using a convolutional neural network to obtain an optimal weight file, and obtaining a sugarcane seed form and seed quantity network model; and step 4, using the trained sugarcane seed form and seed quantity network model, performing prediction verification on the distributed test set, and evaluating the network model. The detection method provided by the invention has the advantages of high recognition rate and high recognition speed. A control system is fo</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjLEKwkAQRNNYiPoP6wcEDKf2EhUrK_twudvEg8tuvN2AAT9elBSWFsPAm8fMs9cRsYeINlGgNq-toAePik4DE3Sod_ZgyYNj0sQRZBTFDhpOn3Tf7TFY0qAjcAMytDY5SwiC6AUC_SDHMU7XNT-X2ayxUXA19SJbn0-38pJjzxVKbx0SalVei2JvtmZjdgfzj_MG_2NH3g</recordid><startdate>20230627</startdate><enddate>20230627</enddate><creator>CHU YUAN</creator><creator>YE YINGMIN</creator><creator>BYUN JOON-SEOK</creator><creator>ZHENG CHUANGRUI</creator><creator>TANG DAN</creator><creator>LI SHANGPING</creator><creator>WANG CONG</creator><creator>LI KAIHUA</creator><creator>WEN CHUNMING</creator><creator>LI YANG</creator><creator>YAN QINGLIN</creator><creator>ZHANG CHAO</creator><creator>CHEN CHENG</creator><creator>GAN WEIGUANG</creator><scope>EVB</scope></search><sort><creationdate>20230627</creationdate><title>Deep learning-based detection method and control system for form and quantity of sugarcane seeds in sugarcane collection box</title><author>CHU YUAN ; YE YINGMIN ; BYUN JOON-SEOK ; ZHENG CHUANGRUI ; TANG DAN ; LI SHANGPING ; WANG CONG ; LI KAIHUA ; WEN CHUNMING ; LI YANG ; YAN QINGLIN ; ZHANG CHAO ; CHEN CHENG ; GAN WEIGUANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116343035A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>CHU YUAN</creatorcontrib><creatorcontrib>YE YINGMIN</creatorcontrib><creatorcontrib>BYUN JOON-SEOK</creatorcontrib><creatorcontrib>ZHENG CHUANGRUI</creatorcontrib><creatorcontrib>TANG DAN</creatorcontrib><creatorcontrib>LI SHANGPING</creatorcontrib><creatorcontrib>WANG CONG</creatorcontrib><creatorcontrib>LI KAIHUA</creatorcontrib><creatorcontrib>WEN CHUNMING</creatorcontrib><creatorcontrib>LI YANG</creatorcontrib><creatorcontrib>YAN QINGLIN</creatorcontrib><creatorcontrib>ZHANG CHAO</creatorcontrib><creatorcontrib>CHEN CHENG</creatorcontrib><creatorcontrib>GAN WEIGUANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHU YUAN</au><au>YE YINGMIN</au><au>BYUN JOON-SEOK</au><au>ZHENG CHUANGRUI</au><au>TANG DAN</au><au>LI SHANGPING</au><au>WANG CONG</au><au>LI KAIHUA</au><au>WEN CHUNMING</au><au>LI YANG</au><au>YAN QINGLIN</au><au>ZHANG CHAO</au><au>CHEN CHENG</au><au>GAN WEIGUANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Deep learning-based detection method and control system for form and quantity of sugarcane seeds in sugarcane collection box</title><date>2023-06-27</date><risdate>2023</risdate><abstract>The invention discloses a method for detecting the form and quantity of sugarcane seeds in a sugarcane collecting box based on deep learning. The method comprises the following steps: step 1, acquiring image information of the sugarcane seeds in the sugarcane collecting box by using a camera device; step 2, calibrating the sugarcane seed image, making a data set, and dividing the data set into a training set, a verification set and a test set according to a proportion; 3, performing iterative training on the calibrated training set and verification set by using a convolutional neural network to obtain an optimal weight file, and obtaining a sugarcane seed form and seed quantity network model; and step 4, using the trained sugarcane seed form and seed quantity network model, performing prediction verification on the distributed test set, and evaluating the network model. The detection method provided by the invention has the advantages of high recognition rate and high recognition speed. A control system is fo</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116343035A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Deep learning-based detection method and control system for form and quantity of sugarcane seeds in sugarcane collection box
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A06%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CHU%20YUAN&rft.date=2023-06-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116343035A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true