Neural network operation method and device, chip, electronic equipment and storage medium
The invention relates to the field of data calculation, and relates to a neural network operation method and device, a chip, electronic equipment and a storage medium. The neural network operation method comprises the following steps: acquiring input data of neural network operation and Wk * Hk sub-...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | XU DONG XIONG XIANKUI |
description | The invention relates to the field of data calculation, and relates to a neural network operation method and device, a chip, electronic equipment and a storage medium. The neural network operation method comprises the following steps: acquiring input data of neural network operation and Wk * Hk sub-convolution kernel groups, and entering an operation step; n Wk * Hk * C convolution kernels of neural network operation are split to obtain N * Wk * Hk 1 * 1 * C sub convolution kernels, and the N * Wk * Hk 1 * 1 * C sub convolution kernels are divided into Wk * Hk sub convolution kernel groups; the operation step comprises the following steps of: rearranging input data according to a data rearrangement mode corresponding to each sub-convolution kernel group to obtain rearranged input data corresponding to each sub-convolution kernel group; performing convolution on each sub-convolution kernel group and the rearranged input data corresponding to each sub-convolution kernel group to obtain a convolution result of e |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116306840A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116306840A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116306840A3</originalsourceid><addsrcrecordid>eNqNjbEKwjAYBrM4iPoOv3uFlkrpKkVx6uTiVELyaYNJ_pgm-voW8QGcbrnjluLaI0dpySO9OT6IA6JMhj05pJE1Sa9J42UUClKjCQXBQqXI3ijCM5vg4NNXmxJHecdcapPdWixu0k7Y_LgS29Px0p13CDxgClJhng5dX1VNXTbtvjzU_zgf5WA6pQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Neural network operation method and device, chip, electronic equipment and storage medium</title><source>esp@cenet</source><creator>XU DONG ; XIONG XIANKUI</creator><creatorcontrib>XU DONG ; XIONG XIANKUI</creatorcontrib><description>The invention relates to the field of data calculation, and relates to a neural network operation method and device, a chip, electronic equipment and a storage medium. The neural network operation method comprises the following steps: acquiring input data of neural network operation and Wk * Hk sub-convolution kernel groups, and entering an operation step; n Wk * Hk * C convolution kernels of neural network operation are split to obtain N * Wk * Hk 1 * 1 * C sub convolution kernels, and the N * Wk * Hk 1 * 1 * C sub convolution kernels are divided into Wk * Hk sub convolution kernel groups; the operation step comprises the following steps of: rearranging input data according to a data rearrangement mode corresponding to each sub-convolution kernel group to obtain rearranged input data corresponding to each sub-convolution kernel group; performing convolution on each sub-convolution kernel group and the rearranged input data corresponding to each sub-convolution kernel group to obtain a convolution result of e</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230623&DB=EPODOC&CC=CN&NR=116306840A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230623&DB=EPODOC&CC=CN&NR=116306840A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XU DONG</creatorcontrib><creatorcontrib>XIONG XIANKUI</creatorcontrib><title>Neural network operation method and device, chip, electronic equipment and storage medium</title><description>The invention relates to the field of data calculation, and relates to a neural network operation method and device, a chip, electronic equipment and a storage medium. The neural network operation method comprises the following steps: acquiring input data of neural network operation and Wk * Hk sub-convolution kernel groups, and entering an operation step; n Wk * Hk * C convolution kernels of neural network operation are split to obtain N * Wk * Hk 1 * 1 * C sub convolution kernels, and the N * Wk * Hk 1 * 1 * C sub convolution kernels are divided into Wk * Hk sub convolution kernel groups; the operation step comprises the following steps of: rearranging input data according to a data rearrangement mode corresponding to each sub-convolution kernel group to obtain rearranged input data corresponding to each sub-convolution kernel group; performing convolution on each sub-convolution kernel group and the rearranged input data corresponding to each sub-convolution kernel group to obtain a convolution result of e</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjbEKwjAYBrM4iPoOv3uFlkrpKkVx6uTiVELyaYNJ_pgm-voW8QGcbrnjluLaI0dpySO9OT6IA6JMhj05pJE1Sa9J42UUClKjCQXBQqXI3ijCM5vg4NNXmxJHecdcapPdWixu0k7Y_LgS29Px0p13CDxgClJhng5dX1VNXTbtvjzU_zgf5WA6pQ</recordid><startdate>20230623</startdate><enddate>20230623</enddate><creator>XU DONG</creator><creator>XIONG XIANKUI</creator><scope>EVB</scope></search><sort><creationdate>20230623</creationdate><title>Neural network operation method and device, chip, electronic equipment and storage medium</title><author>XU DONG ; XIONG XIANKUI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116306840A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>XU DONG</creatorcontrib><creatorcontrib>XIONG XIANKUI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XU DONG</au><au>XIONG XIANKUI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Neural network operation method and device, chip, electronic equipment and storage medium</title><date>2023-06-23</date><risdate>2023</risdate><abstract>The invention relates to the field of data calculation, and relates to a neural network operation method and device, a chip, electronic equipment and a storage medium. The neural network operation method comprises the following steps: acquiring input data of neural network operation and Wk * Hk sub-convolution kernel groups, and entering an operation step; n Wk * Hk * C convolution kernels of neural network operation are split to obtain N * Wk * Hk 1 * 1 * C sub convolution kernels, and the N * Wk * Hk 1 * 1 * C sub convolution kernels are divided into Wk * Hk sub convolution kernel groups; the operation step comprises the following steps of: rearranging input data according to a data rearrangement mode corresponding to each sub-convolution kernel group to obtain rearranged input data corresponding to each sub-convolution kernel group; performing convolution on each sub-convolution kernel group and the rearranged input data corresponding to each sub-convolution kernel group to obtain a convolution result of e</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN116306840A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Neural network operation method and device, chip, electronic equipment and storage medium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A40%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XU%20DONG&rft.date=2023-06-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116306840A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |