Neural network operation method and device, chip, electronic equipment and storage medium

The invention relates to the field of data calculation, and relates to a neural network operation method and device, a chip, electronic equipment and a storage medium. The neural network operation method comprises the following steps: acquiring input data of neural network operation and Wk * Hk sub-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: XU DONG, XIONG XIANKUI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator XU DONG
XIONG XIANKUI
description The invention relates to the field of data calculation, and relates to a neural network operation method and device, a chip, electronic equipment and a storage medium. The neural network operation method comprises the following steps: acquiring input data of neural network operation and Wk * Hk sub-convolution kernel groups, and entering an operation step; n Wk * Hk * C convolution kernels of neural network operation are split to obtain N * Wk * Hk 1 * 1 * C sub convolution kernels, and the N * Wk * Hk 1 * 1 * C sub convolution kernels are divided into Wk * Hk sub convolution kernel groups; the operation step comprises the following steps of: rearranging input data according to a data rearrangement mode corresponding to each sub-convolution kernel group to obtain rearranged input data corresponding to each sub-convolution kernel group; performing convolution on each sub-convolution kernel group and the rearranged input data corresponding to each sub-convolution kernel group to obtain a convolution result of e
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116306840A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116306840A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116306840A3</originalsourceid><addsrcrecordid>eNqNjbEKwjAYBrM4iPoOv3uFlkrpKkVx6uTiVELyaYNJ_pgm-voW8QGcbrnjluLaI0dpySO9OT6IA6JMhj05pJE1Sa9J42UUClKjCQXBQqXI3ijCM5vg4NNXmxJHecdcapPdWixu0k7Y_LgS29Px0p13CDxgClJhng5dX1VNXTbtvjzU_zgf5WA6pQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Neural network operation method and device, chip, electronic equipment and storage medium</title><source>esp@cenet</source><creator>XU DONG ; XIONG XIANKUI</creator><creatorcontrib>XU DONG ; XIONG XIANKUI</creatorcontrib><description>The invention relates to the field of data calculation, and relates to a neural network operation method and device, a chip, electronic equipment and a storage medium. The neural network operation method comprises the following steps: acquiring input data of neural network operation and Wk * Hk sub-convolution kernel groups, and entering an operation step; n Wk * Hk * C convolution kernels of neural network operation are split to obtain N * Wk * Hk 1 * 1 * C sub convolution kernels, and the N * Wk * Hk 1 * 1 * C sub convolution kernels are divided into Wk * Hk sub convolution kernel groups; the operation step comprises the following steps of: rearranging input data according to a data rearrangement mode corresponding to each sub-convolution kernel group to obtain rearranged input data corresponding to each sub-convolution kernel group; performing convolution on each sub-convolution kernel group and the rearranged input data corresponding to each sub-convolution kernel group to obtain a convolution result of e</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230623&amp;DB=EPODOC&amp;CC=CN&amp;NR=116306840A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230623&amp;DB=EPODOC&amp;CC=CN&amp;NR=116306840A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XU DONG</creatorcontrib><creatorcontrib>XIONG XIANKUI</creatorcontrib><title>Neural network operation method and device, chip, electronic equipment and storage medium</title><description>The invention relates to the field of data calculation, and relates to a neural network operation method and device, a chip, electronic equipment and a storage medium. The neural network operation method comprises the following steps: acquiring input data of neural network operation and Wk * Hk sub-convolution kernel groups, and entering an operation step; n Wk * Hk * C convolution kernels of neural network operation are split to obtain N * Wk * Hk 1 * 1 * C sub convolution kernels, and the N * Wk * Hk 1 * 1 * C sub convolution kernels are divided into Wk * Hk sub convolution kernel groups; the operation step comprises the following steps of: rearranging input data according to a data rearrangement mode corresponding to each sub-convolution kernel group to obtain rearranged input data corresponding to each sub-convolution kernel group; performing convolution on each sub-convolution kernel group and the rearranged input data corresponding to each sub-convolution kernel group to obtain a convolution result of e</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjbEKwjAYBrM4iPoOv3uFlkrpKkVx6uTiVELyaYNJ_pgm-voW8QGcbrnjluLaI0dpySO9OT6IA6JMhj05pJE1Sa9J42UUClKjCQXBQqXI3ijCM5vg4NNXmxJHecdcapPdWixu0k7Y_LgS29Px0p13CDxgClJhng5dX1VNXTbtvjzU_zgf5WA6pQ</recordid><startdate>20230623</startdate><enddate>20230623</enddate><creator>XU DONG</creator><creator>XIONG XIANKUI</creator><scope>EVB</scope></search><sort><creationdate>20230623</creationdate><title>Neural network operation method and device, chip, electronic equipment and storage medium</title><author>XU DONG ; XIONG XIANKUI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116306840A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>XU DONG</creatorcontrib><creatorcontrib>XIONG XIANKUI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XU DONG</au><au>XIONG XIANKUI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Neural network operation method and device, chip, electronic equipment and storage medium</title><date>2023-06-23</date><risdate>2023</risdate><abstract>The invention relates to the field of data calculation, and relates to a neural network operation method and device, a chip, electronic equipment and a storage medium. The neural network operation method comprises the following steps: acquiring input data of neural network operation and Wk * Hk sub-convolution kernel groups, and entering an operation step; n Wk * Hk * C convolution kernels of neural network operation are split to obtain N * Wk * Hk 1 * 1 * C sub convolution kernels, and the N * Wk * Hk 1 * 1 * C sub convolution kernels are divided into Wk * Hk sub convolution kernel groups; the operation step comprises the following steps of: rearranging input data according to a data rearrangement mode corresponding to each sub-convolution kernel group to obtain rearranged input data corresponding to each sub-convolution kernel group; performing convolution on each sub-convolution kernel group and the rearranged input data corresponding to each sub-convolution kernel group to obtain a convolution result of e</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116306840A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Neural network operation method and device, chip, electronic equipment and storage medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A40%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XU%20DONG&rft.date=2023-06-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116306840A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true