SAH-Unet-based high-resolution remote sensing image impervious surface extraction method

The invention discloses a high-resolution remote sensing image impervious surface extraction method based on SAH-Unet, and the method comprises the steps: S1, obtaining a target region high-resolution remote sensing image and corresponding OSM data, and carrying out the labeling of the high-resoluti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: HOU DONG, CHEN ZHE, CHANG RUICHUN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator HOU DONG
CHEN ZHE
CHANG RUICHUN
description The invention discloses a high-resolution remote sensing image impervious surface extraction method based on SAH-Unet, and the method comprises the steps: S1, obtaining a target region high-resolution remote sensing image and corresponding OSM data, and carrying out the labeling of the high-resolution remote sensing image, and obtaining an impervious surface label image; s2, preprocessing data to obtain an impervious surface sample data set; s3, constructing an SAH-Unet model for feature extraction of the high-resolution remote sensing image; s4, taking the impervious surface sample data set of the target area obtained in the step S2 as network input, and carrying out iterative optimization on SAH-Unet model parameters by using a neural network optimizer through minimizing a loss function; and S5, inputting a target high-resolution remote sensing image of a to-be-identified impervious surface into the SAH-Unet model, extracting image fusion features and performing pixel-by-pixel surface feature category predi
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116246169A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116246169A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116246169A3</originalsourceid><addsrcrecordid>eNrjZIgIdvTQDc1LLdFNSixOTVHIyEzP0C1KLc7PKS3JzM9TKErNzS9JVShOzSvOzEtXyMxNTE8FkgWpRWWZ-aXFCsWlRWmJyakKqRUlRYnJYC25qSUZ-Sk8DKxpiTnFqbxQmptB0c01xNlDN7UgPz61uACoCWhrvLOfoaGZkYmZoZmlozExagC2rjq9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SAH-Unet-based high-resolution remote sensing image impervious surface extraction method</title><source>esp@cenet</source><creator>HOU DONG ; CHEN ZHE ; CHANG RUICHUN</creator><creatorcontrib>HOU DONG ; CHEN ZHE ; CHANG RUICHUN</creatorcontrib><description>The invention discloses a high-resolution remote sensing image impervious surface extraction method based on SAH-Unet, and the method comprises the steps: S1, obtaining a target region high-resolution remote sensing image and corresponding OSM data, and carrying out the labeling of the high-resolution remote sensing image, and obtaining an impervious surface label image; s2, preprocessing data to obtain an impervious surface sample data set; s3, constructing an SAH-Unet model for feature extraction of the high-resolution remote sensing image; s4, taking the impervious surface sample data set of the target area obtained in the step S2 as network input, and carrying out iterative optimization on SAH-Unet model parameters by using a neural network optimizer through minimizing a loss function; and S5, inputting a target high-resolution remote sensing image of a to-be-identified impervious surface into the SAH-Unet model, extracting image fusion features and performing pixel-by-pixel surface feature category predi</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230609&amp;DB=EPODOC&amp;CC=CN&amp;NR=116246169A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,782,887,25571,76555</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230609&amp;DB=EPODOC&amp;CC=CN&amp;NR=116246169A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HOU DONG</creatorcontrib><creatorcontrib>CHEN ZHE</creatorcontrib><creatorcontrib>CHANG RUICHUN</creatorcontrib><title>SAH-Unet-based high-resolution remote sensing image impervious surface extraction method</title><description>The invention discloses a high-resolution remote sensing image impervious surface extraction method based on SAH-Unet, and the method comprises the steps: S1, obtaining a target region high-resolution remote sensing image and corresponding OSM data, and carrying out the labeling of the high-resolution remote sensing image, and obtaining an impervious surface label image; s2, preprocessing data to obtain an impervious surface sample data set; s3, constructing an SAH-Unet model for feature extraction of the high-resolution remote sensing image; s4, taking the impervious surface sample data set of the target area obtained in the step S2 as network input, and carrying out iterative optimization on SAH-Unet model parameters by using a neural network optimizer through minimizing a loss function; and S5, inputting a target high-resolution remote sensing image of a to-be-identified impervious surface into the SAH-Unet model, extracting image fusion features and performing pixel-by-pixel surface feature category predi</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZIgIdvTQDc1LLdFNSixOTVHIyEzP0C1KLc7PKS3JzM9TKErNzS9JVShOzSvOzEtXyMxNTE8FkgWpRWWZ-aXFCsWlRWmJyakKqRUlRYnJYC25qSUZ-Sk8DKxpiTnFqbxQmptB0c01xNlDN7UgPz61uACoCWhrvLOfoaGZkYmZoZmlozExagC2rjq9</recordid><startdate>20230609</startdate><enddate>20230609</enddate><creator>HOU DONG</creator><creator>CHEN ZHE</creator><creator>CHANG RUICHUN</creator><scope>EVB</scope></search><sort><creationdate>20230609</creationdate><title>SAH-Unet-based high-resolution remote sensing image impervious surface extraction method</title><author>HOU DONG ; CHEN ZHE ; CHANG RUICHUN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116246169A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>HOU DONG</creatorcontrib><creatorcontrib>CHEN ZHE</creatorcontrib><creatorcontrib>CHANG RUICHUN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HOU DONG</au><au>CHEN ZHE</au><au>CHANG RUICHUN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SAH-Unet-based high-resolution remote sensing image impervious surface extraction method</title><date>2023-06-09</date><risdate>2023</risdate><abstract>The invention discloses a high-resolution remote sensing image impervious surface extraction method based on SAH-Unet, and the method comprises the steps: S1, obtaining a target region high-resolution remote sensing image and corresponding OSM data, and carrying out the labeling of the high-resolution remote sensing image, and obtaining an impervious surface label image; s2, preprocessing data to obtain an impervious surface sample data set; s3, constructing an SAH-Unet model for feature extraction of the high-resolution remote sensing image; s4, taking the impervious surface sample data set of the target area obtained in the step S2 as network input, and carrying out iterative optimization on SAH-Unet model parameters by using a neural network optimizer through minimizing a loss function; and S5, inputting a target high-resolution remote sensing image of a to-be-identified impervious surface into the SAH-Unet model, extracting image fusion features and performing pixel-by-pixel surface feature category predi</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116246169A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title SAH-Unet-based high-resolution remote sensing image impervious surface extraction method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T07%3A07%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HOU%20DONG&rft.date=2023-06-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116246169A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true