Unbalanced data-oriented federal cross-modal retrieval method and system
The invention provides a federated cross-modal retrieval method and system oriented to unbalanced data, relates to the field of federated learning and cross-modal retrieval, solves the influence caused by data non-independent identical distribution in a cross-modal retrieval task, and encodes a quer...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LUO XIN FU TING XU XINSHUN ZHAN YUWEI |
description | The invention provides a federated cross-modal retrieval method and system oriented to unbalanced data, relates to the field of federated learning and cross-modal retrieval, solves the influence caused by data non-independent identical distribution in a cross-modal retrieval task, and encodes a query sample of a to-be-queried target based on a trained global cross-modal retrieval model so as to obtain a query result of the to-be-queried target. Obtaining a query hash code; performing similarity calculation on the query hash code and a data hash code in the retrieval data set, and obtaining a retrieval result based on the similarity; the global cross-modal retrieval model is obtained based on federal learning training; the method is oriented to non-independent identically distributed data, and feature representation of samples is enriched and enhanced by embedding global feature category prototypes into sample features; semantic information of supervised learning labels is fully utilized, so that the generated |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116244484A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116244484A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116244484A3</originalsourceid><addsrcrecordid>eNrjZPAIzUtKzEnMS05NUUhJLEnUzS_KTM0rAfLSUlNSixJzFJKL8ouLdXPzU4DsotQSoHQZkJWbWpKRn6KQmJeiUFxZXJKay8PAmpaYU5zKC6W5GRTdXEOcPXRTC_LjU4sLEpNT81JL4p39DA3NjExMTCxMHI2JUQMAuNc0fw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Unbalanced data-oriented federal cross-modal retrieval method and system</title><source>esp@cenet</source><creator>LUO XIN ; FU TING ; XU XINSHUN ; ZHAN YUWEI</creator><creatorcontrib>LUO XIN ; FU TING ; XU XINSHUN ; ZHAN YUWEI</creatorcontrib><description>The invention provides a federated cross-modal retrieval method and system oriented to unbalanced data, relates to the field of federated learning and cross-modal retrieval, solves the influence caused by data non-independent identical distribution in a cross-modal retrieval task, and encodes a query sample of a to-be-queried target based on a trained global cross-modal retrieval model so as to obtain a query result of the to-be-queried target. Obtaining a query hash code; performing similarity calculation on the query hash code and a data hash code in the retrieval data set, and obtaining a retrieval result based on the similarity; the global cross-modal retrieval model is obtained based on federal learning training; the method is oriented to non-independent identically distributed data, and feature representation of samples is enriched and enhanced by embedding global feature category prototypes into sample features; semantic information of supervised learning labels is fully utilized, so that the generated</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230609&DB=EPODOC&CC=CN&NR=116244484A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230609&DB=EPODOC&CC=CN&NR=116244484A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LUO XIN</creatorcontrib><creatorcontrib>FU TING</creatorcontrib><creatorcontrib>XU XINSHUN</creatorcontrib><creatorcontrib>ZHAN YUWEI</creatorcontrib><title>Unbalanced data-oriented federal cross-modal retrieval method and system</title><description>The invention provides a federated cross-modal retrieval method and system oriented to unbalanced data, relates to the field of federated learning and cross-modal retrieval, solves the influence caused by data non-independent identical distribution in a cross-modal retrieval task, and encodes a query sample of a to-be-queried target based on a trained global cross-modal retrieval model so as to obtain a query result of the to-be-queried target. Obtaining a query hash code; performing similarity calculation on the query hash code and a data hash code in the retrieval data set, and obtaining a retrieval result based on the similarity; the global cross-modal retrieval model is obtained based on federal learning training; the method is oriented to non-independent identically distributed data, and feature representation of samples is enriched and enhanced by embedding global feature category prototypes into sample features; semantic information of supervised learning labels is fully utilized, so that the generated</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPAIzUtKzEnMS05NUUhJLEnUzS_KTM0rAfLSUlNSixJzFJKL8ouLdXPzU4DsotQSoHQZkJWbWpKRn6KQmJeiUFxZXJKay8PAmpaYU5zKC6W5GRTdXEOcPXRTC_LjU4sLEpNT81JL4p39DA3NjExMTCxMHI2JUQMAuNc0fw</recordid><startdate>20230609</startdate><enddate>20230609</enddate><creator>LUO XIN</creator><creator>FU TING</creator><creator>XU XINSHUN</creator><creator>ZHAN YUWEI</creator><scope>EVB</scope></search><sort><creationdate>20230609</creationdate><title>Unbalanced data-oriented federal cross-modal retrieval method and system</title><author>LUO XIN ; FU TING ; XU XINSHUN ; ZHAN YUWEI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116244484A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LUO XIN</creatorcontrib><creatorcontrib>FU TING</creatorcontrib><creatorcontrib>XU XINSHUN</creatorcontrib><creatorcontrib>ZHAN YUWEI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LUO XIN</au><au>FU TING</au><au>XU XINSHUN</au><au>ZHAN YUWEI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Unbalanced data-oriented federal cross-modal retrieval method and system</title><date>2023-06-09</date><risdate>2023</risdate><abstract>The invention provides a federated cross-modal retrieval method and system oriented to unbalanced data, relates to the field of federated learning and cross-modal retrieval, solves the influence caused by data non-independent identical distribution in a cross-modal retrieval task, and encodes a query sample of a to-be-queried target based on a trained global cross-modal retrieval model so as to obtain a query result of the to-be-queried target. Obtaining a query hash code; performing similarity calculation on the query hash code and a data hash code in the retrieval data set, and obtaining a retrieval result based on the similarity; the global cross-modal retrieval model is obtained based on federal learning training; the method is oriented to non-independent identically distributed data, and feature representation of samples is enriched and enhanced by embedding global feature category prototypes into sample features; semantic information of supervised learning labels is fully utilized, so that the generated</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN116244484A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Unbalanced data-oriented federal cross-modal retrieval method and system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T21%3A42%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LUO%20XIN&rft.date=2023-06-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116244484A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |