Wireless communication network anomaly identification system and method based on big data

The invention relates to the technical field of wireless communication network anomaly recognition, in particular to a wireless communication network anomaly recognition system and method based on big data, and the system comprises an intelligent monitoring data acquisition module, a target event de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LIU XING, CHU FANGFANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LIU XING
CHU FANGFANG
description The invention relates to the technical field of wireless communication network anomaly recognition, in particular to a wireless communication network anomaly recognition system and method based on big data, and the system comprises an intelligent monitoring data acquisition module, a target event determination module, a condition feature set construction module, a real-time state matching module and an intelligent recognition conversion module. The intelligent monitoring data acquisition module acquires transmission data correspondingly stored in an interaction database of the intelligent monitoring system according to the effective monitoring address; a target event determination module analyzes a target event which causes abnormal transmission data due to abnormal wireless communication network in the interaction database; the conditional feature set construction module is used for analyzing and processing conditional feature indexes before decision generation to construct a conditional feature set; the rea
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116233902A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116233902A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116233902A3</originalsourceid><addsrcrecordid>eNrjZIgMzyxKzUktLlZIzs_NLc3LTE4syczPU8hLLSnPL8pWSMzLz03MqVTITEnNK8lMg0kXVxaXpOYCZVMUclNLMvJTFJISi1NTFIBSSZnpCimJJYk8DKxpiTnFqbxQmptB0c01xNlDN7UgPz61uCAxORVoSbyzn6GhmZGxsaWBkaMxMWoAS-o7IA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Wireless communication network anomaly identification system and method based on big data</title><source>esp@cenet</source><creator>LIU XING ; CHU FANGFANG</creator><creatorcontrib>LIU XING ; CHU FANGFANG</creatorcontrib><description>The invention relates to the technical field of wireless communication network anomaly recognition, in particular to a wireless communication network anomaly recognition system and method based on big data, and the system comprises an intelligent monitoring data acquisition module, a target event determination module, a condition feature set construction module, a real-time state matching module and an intelligent recognition conversion module. The intelligent monitoring data acquisition module acquires transmission data correspondingly stored in an interaction database of the intelligent monitoring system according to the effective monitoring address; a target event determination module analyzes a target event which causes abnormal transmission data due to abnormal wireless communication network in the interaction database; the conditional feature set construction module is used for analyzing and processing conditional feature indexes before decision generation to construct a conditional feature set; the rea</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION ; WIRELESS COMMUNICATIONS NETWORKS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230606&amp;DB=EPODOC&amp;CC=CN&amp;NR=116233902A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230606&amp;DB=EPODOC&amp;CC=CN&amp;NR=116233902A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIU XING</creatorcontrib><creatorcontrib>CHU FANGFANG</creatorcontrib><title>Wireless communication network anomaly identification system and method based on big data</title><description>The invention relates to the technical field of wireless communication network anomaly recognition, in particular to a wireless communication network anomaly recognition system and method based on big data, and the system comprises an intelligent monitoring data acquisition module, a target event determination module, a condition feature set construction module, a real-time state matching module and an intelligent recognition conversion module. The intelligent monitoring data acquisition module acquires transmission data correspondingly stored in an interaction database of the intelligent monitoring system according to the effective monitoring address; a target event determination module analyzes a target event which causes abnormal transmission data due to abnormal wireless communication network in the interaction database; the conditional feature set construction module is used for analyzing and processing conditional feature indexes before decision generation to construct a conditional feature set; the rea</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><subject>WIRELESS COMMUNICATIONS NETWORKS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZIgMzyxKzUktLlZIzs_NLc3LTE4syczPU8hLLSnPL8pWSMzLz03MqVTITEnNK8lMg0kXVxaXpOYCZVMUclNLMvJTFJISi1NTFIBSSZnpCimJJYk8DKxpiTnFqbxQmptB0c01xNlDN7UgPz61uCAxORVoSbyzn6GhmZGxsaWBkaMxMWoAS-o7IA</recordid><startdate>20230606</startdate><enddate>20230606</enddate><creator>LIU XING</creator><creator>CHU FANGFANG</creator><scope>EVB</scope></search><sort><creationdate>20230606</creationdate><title>Wireless communication network anomaly identification system and method based on big data</title><author>LIU XING ; CHU FANGFANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116233902A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><topic>WIRELESS COMMUNICATIONS NETWORKS</topic><toplevel>online_resources</toplevel><creatorcontrib>LIU XING</creatorcontrib><creatorcontrib>CHU FANGFANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIU XING</au><au>CHU FANGFANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Wireless communication network anomaly identification system and method based on big data</title><date>2023-06-06</date><risdate>2023</risdate><abstract>The invention relates to the technical field of wireless communication network anomaly recognition, in particular to a wireless communication network anomaly recognition system and method based on big data, and the system comprises an intelligent monitoring data acquisition module, a target event determination module, a condition feature set construction module, a real-time state matching module and an intelligent recognition conversion module. The intelligent monitoring data acquisition module acquires transmission data correspondingly stored in an interaction database of the intelligent monitoring system according to the effective monitoring address; a target event determination module analyzes a target event which causes abnormal transmission data due to abnormal wireless communication network in the interaction database; the conditional feature set construction module is used for analyzing and processing conditional feature indexes before decision generation to construct a conditional feature set; the rea</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN116233902A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRIC DIGITAL DATA PROCESSING
ELECTRICITY
PHYSICS
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
WIRELESS COMMUNICATIONS NETWORKS
title Wireless communication network anomaly identification system and method based on big data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T15%3A22%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIU%20XING&rft.date=2023-06-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116233902A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true