Wireless communication network anomaly identification system and method based on big data
The invention relates to the technical field of wireless communication network anomaly recognition, in particular to a wireless communication network anomaly recognition system and method based on big data, and the system comprises an intelligent monitoring data acquisition module, a target event de...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LIU XING CHU FANGFANG |
description | The invention relates to the technical field of wireless communication network anomaly recognition, in particular to a wireless communication network anomaly recognition system and method based on big data, and the system comprises an intelligent monitoring data acquisition module, a target event determination module, a condition feature set construction module, a real-time state matching module and an intelligent recognition conversion module. The intelligent monitoring data acquisition module acquires transmission data correspondingly stored in an interaction database of the intelligent monitoring system according to the effective monitoring address; a target event determination module analyzes a target event which causes abnormal transmission data due to abnormal wireless communication network in the interaction database; the conditional feature set construction module is used for analyzing and processing conditional feature indexes before decision generation to construct a conditional feature set; the rea |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116233902A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116233902A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116233902A3</originalsourceid><addsrcrecordid>eNrjZIgMzyxKzUktLlZIzs_NLc3LTE4syczPU8hLLSnPL8pWSMzLz03MqVTITEnNK8lMg0kXVxaXpOYCZVMUclNLMvJTFJISi1NTFIBSSZnpCimJJYk8DKxpiTnFqbxQmptB0c01xNlDN7UgPz61uCAxORVoSbyzn6GhmZGxsaWBkaMxMWoAS-o7IA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Wireless communication network anomaly identification system and method based on big data</title><source>esp@cenet</source><creator>LIU XING ; CHU FANGFANG</creator><creatorcontrib>LIU XING ; CHU FANGFANG</creatorcontrib><description>The invention relates to the technical field of wireless communication network anomaly recognition, in particular to a wireless communication network anomaly recognition system and method based on big data, and the system comprises an intelligent monitoring data acquisition module, a target event determination module, a condition feature set construction module, a real-time state matching module and an intelligent recognition conversion module. The intelligent monitoring data acquisition module acquires transmission data correspondingly stored in an interaction database of the intelligent monitoring system according to the effective monitoring address; a target event determination module analyzes a target event which causes abnormal transmission data due to abnormal wireless communication network in the interaction database; the conditional feature set construction module is used for analyzing and processing conditional feature indexes before decision generation to construct a conditional feature set; the rea</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION ; WIRELESS COMMUNICATIONS NETWORKS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230606&DB=EPODOC&CC=CN&NR=116233902A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230606&DB=EPODOC&CC=CN&NR=116233902A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIU XING</creatorcontrib><creatorcontrib>CHU FANGFANG</creatorcontrib><title>Wireless communication network anomaly identification system and method based on big data</title><description>The invention relates to the technical field of wireless communication network anomaly recognition, in particular to a wireless communication network anomaly recognition system and method based on big data, and the system comprises an intelligent monitoring data acquisition module, a target event determination module, a condition feature set construction module, a real-time state matching module and an intelligent recognition conversion module. The intelligent monitoring data acquisition module acquires transmission data correspondingly stored in an interaction database of the intelligent monitoring system according to the effective monitoring address; a target event determination module analyzes a target event which causes abnormal transmission data due to abnormal wireless communication network in the interaction database; the conditional feature set construction module is used for analyzing and processing conditional feature indexes before decision generation to construct a conditional feature set; the rea</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><subject>WIRELESS COMMUNICATIONS NETWORKS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZIgMzyxKzUktLlZIzs_NLc3LTE4syczPU8hLLSnPL8pWSMzLz03MqVTITEnNK8lMg0kXVxaXpOYCZVMUclNLMvJTFJISi1NTFIBSSZnpCimJJYk8DKxpiTnFqbxQmptB0c01xNlDN7UgPz61uCAxORVoSbyzn6GhmZGxsaWBkaMxMWoAS-o7IA</recordid><startdate>20230606</startdate><enddate>20230606</enddate><creator>LIU XING</creator><creator>CHU FANGFANG</creator><scope>EVB</scope></search><sort><creationdate>20230606</creationdate><title>Wireless communication network anomaly identification system and method based on big data</title><author>LIU XING ; CHU FANGFANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116233902A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><topic>WIRELESS COMMUNICATIONS NETWORKS</topic><toplevel>online_resources</toplevel><creatorcontrib>LIU XING</creatorcontrib><creatorcontrib>CHU FANGFANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIU XING</au><au>CHU FANGFANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Wireless communication network anomaly identification system and method based on big data</title><date>2023-06-06</date><risdate>2023</risdate><abstract>The invention relates to the technical field of wireless communication network anomaly recognition, in particular to a wireless communication network anomaly recognition system and method based on big data, and the system comprises an intelligent monitoring data acquisition module, a target event determination module, a condition feature set construction module, a real-time state matching module and an intelligent recognition conversion module. The intelligent monitoring data acquisition module acquires transmission data correspondingly stored in an interaction database of the intelligent monitoring system according to the effective monitoring address; a target event determination module analyzes a target event which causes abnormal transmission data due to abnormal wireless communication network in the interaction database; the conditional feature set construction module is used for analyzing and processing conditional feature indexes before decision generation to construct a conditional feature set; the rea</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN116233902A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC COMMUNICATION TECHNIQUE ELECTRIC DIGITAL DATA PROCESSING ELECTRICITY PHYSICS TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION WIRELESS COMMUNICATIONS NETWORKS |
title | Wireless communication network anomaly identification system and method based on big data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T15%3A22%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIU%20XING&rft.date=2023-06-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116233902A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |