Distributed photovoltaic power generation abnormity diagnosis method and system
The invention relates to a distributed photovoltaic power generation abnormity diagnosis method and system. The method comprises the following steps: acquiring distributed photovoltaic data; selecting features according to the acquired distributed photovoltaic data; performing data preprocessing; se...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | XU MING CHEN FEIFEI LUO XIUHUA XIE DONGYUAN LIN NYUGUI YU LUWEI XIE FANGLIANG ZHENG MEICHUN LIN YAN XIAO YUANZHENG SHEN YIMIN XU HUAFANG JUNG JI-JUNG CHEN ZHI LYU PENG QIAN XIAORUI |
description | The invention relates to a distributed photovoltaic power generation abnormity diagnosis method and system. The method comprises the following steps: acquiring distributed photovoltaic data; selecting features according to the acquired distributed photovoltaic data; performing data preprocessing; setting complexity and model parameters of an XGBoost set model, and adding a tree in the model to enable an objective function of the model to be optimal so as to construct a prediction model; according to the selected features, training and testing the prediction model, iterating the model, adjusting various parameters of the model, and obtaining the prediction model after parameter adjustment; inputting photovoltaic power generation data to be measured into the prediction model after parameter adjustment, and performing abnormality diagnosis on distributed photovoltaic power generation; the system and the method are based on the same concept and comprise five modules of data selection, feature selection, model con |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN116205508A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN116205508A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN116205508A3</originalsourceid><addsrcrecordid>eNqNzDEOgkAQQFEaC6PeYTyACWgwtgY1VtrYk4EdYBJ2Z7Mzari9Fh7A6jcvf57dT6yWuHkaOYiDmLxkNOQWorwpQU-BEhpLAGyCJM82gWPsgygreLJBHGBwoJMa-WU263BUWv26yNaX86O6bihKTRqx_Q6trm5Fsd_mZZkfjrt_zAf6FjgV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Distributed photovoltaic power generation abnormity diagnosis method and system</title><source>esp@cenet</source><creator>XU MING ; CHEN FEIFEI ; LUO XIUHUA ; XIE DONGYUAN ; LIN NYUGUI ; YU LUWEI ; XIE FANGLIANG ; ZHENG MEICHUN ; LIN YAN ; XIAO YUANZHENG ; SHEN YIMIN ; XU HUAFANG ; JUNG JI-JUNG ; CHEN ZHI ; LYU PENG ; QIAN XIAORUI</creator><creatorcontrib>XU MING ; CHEN FEIFEI ; LUO XIUHUA ; XIE DONGYUAN ; LIN NYUGUI ; YU LUWEI ; XIE FANGLIANG ; ZHENG MEICHUN ; LIN YAN ; XIAO YUANZHENG ; SHEN YIMIN ; XU HUAFANG ; JUNG JI-JUNG ; CHEN ZHI ; LYU PENG ; QIAN XIAORUI</creatorcontrib><description>The invention relates to a distributed photovoltaic power generation abnormity diagnosis method and system. The method comprises the following steps: acquiring distributed photovoltaic data; selecting features according to the acquired distributed photovoltaic data; performing data preprocessing; setting complexity and model parameters of an XGBoost set model, and adding a tree in the model to enable an objective function of the model to be optimal so as to construct a prediction model; according to the selected features, training and testing the prediction model, iterating the model, adjusting various parameters of the model, and obtaining the prediction model after parameter adjustment; inputting photovoltaic power generation data to be measured into the prediction model after parameter adjustment, and performing abnormality diagnosis on distributed photovoltaic power generation; the system and the method are based on the same concept and comprise five modules of data selection, feature selection, model con</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; GENERATION ; GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRA-REDRADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, E.G. USINGPHOTOVOLTAIC [PV] MODULES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230602&DB=EPODOC&CC=CN&NR=116205508A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230602&DB=EPODOC&CC=CN&NR=116205508A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XU MING</creatorcontrib><creatorcontrib>CHEN FEIFEI</creatorcontrib><creatorcontrib>LUO XIUHUA</creatorcontrib><creatorcontrib>XIE DONGYUAN</creatorcontrib><creatorcontrib>LIN NYUGUI</creatorcontrib><creatorcontrib>YU LUWEI</creatorcontrib><creatorcontrib>XIE FANGLIANG</creatorcontrib><creatorcontrib>ZHENG MEICHUN</creatorcontrib><creatorcontrib>LIN YAN</creatorcontrib><creatorcontrib>XIAO YUANZHENG</creatorcontrib><creatorcontrib>SHEN YIMIN</creatorcontrib><creatorcontrib>XU HUAFANG</creatorcontrib><creatorcontrib>JUNG JI-JUNG</creatorcontrib><creatorcontrib>CHEN ZHI</creatorcontrib><creatorcontrib>LYU PENG</creatorcontrib><creatorcontrib>QIAN XIAORUI</creatorcontrib><title>Distributed photovoltaic power generation abnormity diagnosis method and system</title><description>The invention relates to a distributed photovoltaic power generation abnormity diagnosis method and system. The method comprises the following steps: acquiring distributed photovoltaic data; selecting features according to the acquired distributed photovoltaic data; performing data preprocessing; setting complexity and model parameters of an XGBoost set model, and adding a tree in the model to enable an objective function of the model to be optimal so as to construct a prediction model; according to the selected features, training and testing the prediction model, iterating the model, adjusting various parameters of the model, and obtaining the prediction model after parameter adjustment; inputting photovoltaic power generation data to be measured into the prediction model after parameter adjustment, and performing abnormality diagnosis on distributed photovoltaic power generation; the system and the method are based on the same concept and comprise five modules of data selection, feature selection, model con</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>CONVERSION OR DISTRIBUTION OF ELECTRIC POWER</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>GENERATION</subject><subject>GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRA-REDRADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, E.G. USINGPHOTOVOLTAIC [PV] MODULES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzDEOgkAQQFEaC6PeYTyACWgwtgY1VtrYk4EdYBJ2Z7Mzari9Fh7A6jcvf57dT6yWuHkaOYiDmLxkNOQWorwpQU-BEhpLAGyCJM82gWPsgygreLJBHGBwoJMa-WU263BUWv26yNaX86O6bihKTRqx_Q6trm5Fsd_mZZkfjrt_zAf6FjgV</recordid><startdate>20230602</startdate><enddate>20230602</enddate><creator>XU MING</creator><creator>CHEN FEIFEI</creator><creator>LUO XIUHUA</creator><creator>XIE DONGYUAN</creator><creator>LIN NYUGUI</creator><creator>YU LUWEI</creator><creator>XIE FANGLIANG</creator><creator>ZHENG MEICHUN</creator><creator>LIN YAN</creator><creator>XIAO YUANZHENG</creator><creator>SHEN YIMIN</creator><creator>XU HUAFANG</creator><creator>JUNG JI-JUNG</creator><creator>CHEN ZHI</creator><creator>LYU PENG</creator><creator>QIAN XIAORUI</creator><scope>EVB</scope></search><sort><creationdate>20230602</creationdate><title>Distributed photovoltaic power generation abnormity diagnosis method and system</title><author>XU MING ; CHEN FEIFEI ; LUO XIUHUA ; XIE DONGYUAN ; LIN NYUGUI ; YU LUWEI ; XIE FANGLIANG ; ZHENG MEICHUN ; LIN YAN ; XIAO YUANZHENG ; SHEN YIMIN ; XU HUAFANG ; JUNG JI-JUNG ; CHEN ZHI ; LYU PENG ; QIAN XIAORUI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN116205508A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>CONVERSION OR DISTRIBUTION OF ELECTRIC POWER</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>GENERATION</topic><topic>GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRA-REDRADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, E.G. USINGPHOTOVOLTAIC [PV] MODULES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>XU MING</creatorcontrib><creatorcontrib>CHEN FEIFEI</creatorcontrib><creatorcontrib>LUO XIUHUA</creatorcontrib><creatorcontrib>XIE DONGYUAN</creatorcontrib><creatorcontrib>LIN NYUGUI</creatorcontrib><creatorcontrib>YU LUWEI</creatorcontrib><creatorcontrib>XIE FANGLIANG</creatorcontrib><creatorcontrib>ZHENG MEICHUN</creatorcontrib><creatorcontrib>LIN YAN</creatorcontrib><creatorcontrib>XIAO YUANZHENG</creatorcontrib><creatorcontrib>SHEN YIMIN</creatorcontrib><creatorcontrib>XU HUAFANG</creatorcontrib><creatorcontrib>JUNG JI-JUNG</creatorcontrib><creatorcontrib>CHEN ZHI</creatorcontrib><creatorcontrib>LYU PENG</creatorcontrib><creatorcontrib>QIAN XIAORUI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XU MING</au><au>CHEN FEIFEI</au><au>LUO XIUHUA</au><au>XIE DONGYUAN</au><au>LIN NYUGUI</au><au>YU LUWEI</au><au>XIE FANGLIANG</au><au>ZHENG MEICHUN</au><au>LIN YAN</au><au>XIAO YUANZHENG</au><au>SHEN YIMIN</au><au>XU HUAFANG</au><au>JUNG JI-JUNG</au><au>CHEN ZHI</au><au>LYU PENG</au><au>QIAN XIAORUI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Distributed photovoltaic power generation abnormity diagnosis method and system</title><date>2023-06-02</date><risdate>2023</risdate><abstract>The invention relates to a distributed photovoltaic power generation abnormity diagnosis method and system. The method comprises the following steps: acquiring distributed photovoltaic data; selecting features according to the acquired distributed photovoltaic data; performing data preprocessing; setting complexity and model parameters of an XGBoost set model, and adding a tree in the model to enable an objective function of the model to be optimal so as to construct a prediction model; according to the selected features, training and testing the prediction model, iterating the model, adjusting various parameters of the model, and obtaining the prediction model after parameter adjustment; inputting photovoltaic power generation data to be measured into the prediction model after parameter adjustment, and performing abnormality diagnosis on distributed photovoltaic power generation; the system and the method are based on the same concept and comprise five modules of data selection, feature selection, model con</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN116205508A |
source | esp@cenet |
subjects | CALCULATING COMPUTING CONVERSION OR DISTRIBUTION OF ELECTRIC POWER COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ELECTRIC DIGITAL DATA PROCESSING ELECTRICITY GENERATION GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRA-REDRADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, E.G. USINGPHOTOVOLTAIC [PV] MODULES PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | Distributed photovoltaic power generation abnormity diagnosis method and system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A41%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XU%20MING&rft.date=2023-06-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN116205508A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |